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Molecular dynamics simulation of the fragile glass-former orthoterphenyl:
A flexible molecule model

S. Mossa,1 R. Di Leonardo,1 G. Ruocco,1 and M. Sampoli2
1Dipartimento di Fisica and INFM, Universita` di L’Aquila, Via Vetoio, Coppito, L’Aquila, I-67100, Italy

2Dipartimento di Energetica and INFM, Universita` di Firenze, Via Santa Marta 3, Firenze, I-50139, Italy
~Received 16 December 1999!

We present a realistic model of the fragile glass-former orthoterphenyl and the results of extensive molecular
dynamics simulations in which we investigated its basic static and dynamic properties. In this model the
internal molecular interactions between the three rigid phenyl rings are described by a set of force constants,
including harmonic and anharmonic terms; the interactions among different molecules are described by
Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the tempera-
ture and momentum dependencies of the self-intermediate scattering function. The simulation data are com-
pared with existing experimental results and with the main predictions of the mode-coupling theory.

PACS number~s!: 64.70.Pf, 71.15.Pd, 61.25.Em, 61.20.2p
iti
th

av

a

ee
ls
ex
va
ar
th
ili
m
m

in

s

igi
C
-
le
m

an
es
n
e
ld

n-

p a
of
m.
by

m
w.
is

only
nes
ions

-
ata
the
ol-

ike
ta-
so
the
p

the
I. INTRODUCTION

In recent years a renewed interest on the glass trans
phenomenon has motivated extensive experimental and
oretical works~see@1# and reference therein!. On the theo-
retical side, new descriptions of the glass transition h
been developed: they emphasized either the dynamic†as the
mode-coupling theory~MCT! of Götze @2# ~the reader may
also consult Ref.@3#! and Schilling and Kob@3# or the
coupled oscillators model of Ngai and Tsang@4#‡ or the ther-
modynamic~as the first principle computation based on
replica formulation of@5# or the inherent structure formalism
computation of@6#! aspects of the transition itself.

A common feature of all these theories is they have b
developed for ‘‘model systems,’’ often monoatomic mode
The comparison of the theoretical results with the real
periment are, therefore, complicated by the trivial obser
tion that in the real world the glass-forming systems
made out of ‘‘molecular systems.’’ As a consequence in
current literature there is a large debate on the applicab
of the theoretical predictions to the experimental outco
and the more stringent tests of the theories come from
lecular dynamics~MD! works.

As an example, it is highly debated in literature the orig
in a molecular glass former, ofsecondaryrelaxations that
can be observed by several experimental techniques be
the well-known microscopic and structural dynamics~see,
among others, Ref.@7# and references therein!. For instance,
fast relaxations~i.e., in the 10212 s range! have been ob-
served in several glasses and it is not yet clear if their or
is related to the molecular center of mass motion, as M
would explain in terms of theb process, or rather to rota
tional or intramolecular dynamics. It is clear the crucial ro
that MD simulations can play to solve this specific proble
If it is possible to build arealistic model able to take into
account the internal degrees of freedom, as well as the tr
lational dynamics, computer simulations allow one to acc
any observable quantity of the system, and also those
directly measurable by present experimental techniqu
Such possibility, together with the physical intuition, cou
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allow the identification of the microscopic mechanisms u
derlying the different observed relaxation processes.

In this paper we want to address the problem to set u
‘‘realistic’’ potential for a glass model system capable
accounting for the internal molecular degrees of freedo
Among the glass-forming molecular liquids characterized
an extremely rich dynamical behavior, the organicfragile @1#
glass former orthoterphenyl ~OTP! (Tm5329 K, Tc
.290 K, TG5243 K) has received much attention fro
both experimental and numerical simulation points of vie
The structure of the OTP molecule, shown in Fig. 1,
known from neutron@8# and x-ray@9# diffraction studies; in
condensed state the OTP molecules are bound together
by van der Waals forces, which resemble the Lennard-Jo
ones often used by most theories and computer simulat
aiming to study the glass transition problem.

Due to its structural complexity, if we would like to ob
tain reliable results to be compared with experimental d
we need to take into account not only the translations of
molecular center of masses and the rotations of the m
ecules as a whole, but also intramolecular motions l
stretching along the molecular bonds, tilt of the bonds, ro
tion of the side rings with respect to the central one, and
on. In other words, we need to describe the dynamics of
liquid at theatomic level. On the contrary, in order to set u

FIG. 1. Molecular structure of OTP (C18H14); it is constituted
by three phenyl rings, the two side rings being attached to
parent~i.e., central! ring by covalent bonds.
612 ©2000 The American Physical Society
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a computational scheme which is affordable in not-too-lo
time with the nowadays computer capability, we need
simplestmodel potential able to capture the relevant featu
of the dynamical behavior of the real system.

In the literature numerical studies of OTP have been p
posed making use of different techniques ranging fromhar-
monic lattice dynamics@10# to molecular dynamics simula
tions on the atomic level based on a general force fi
provided by the standard program Alchemy III@11#. Never-
theless, to our knowledge, only two studies based on mole
lar dynamics simulations ofmolecular modelsof OTP have
been proposed so far. They are as follows.

~i! Lewis and co-workers@12,13# represent the molecul
like a three-sites complex, each site playing the role o
whole phenyl ring, without internal dynamics and an inte
molecular interaction of the Lennard-Jones~LJ! type. This
model takes into account only the dynamical behavior as
ciated with the translations of the molecular center of mas
and with the rotations of the molecules as a whole.

~ii ! Kudchadkar and Wiest@14# propose a more realisti
model with the ‘‘true’’ structure of the molecule. The inte
molecular interaction is of LJ type and, as internal degree
freedom, only the rotational dynamics of the side rings w
respect to the central one is taken into account. These in
nal degrees of freedom are effectively the most releva
nevertheless, the authors parametrize the potential in su
way that the side rings are, at equilibrium, in a configurat
that corresponds to a saddle point in the molecular ene
surface.

The model potential we are going to introduce is mu
more efficient in mimicking the complexity of the dynamic
behavior of the real system. The paper is organized as
lows: in Sec. II we introduce the intramolecular model p
tential; in Sec. III we explain how we calculated the for
constants in order to reproduce a realistic isolated mole
vibrational spectrum. In Sec. IV we present some compu
tional details and in Sec. V we note some of the main w
established predictions of the ideal mode-coupling the
used in Sec. VI to test the center of mass dynamical beh
ior. In Sec. VI we discuss our MD simulation results main
with regard to the study of the diffusion and self-dynam
properties. Section VII contains an overall discussion and
conclusions.

II. THE MOLECULAR MODEL

In our model the OTP molecule is constituted by thr
rigid hexagons~phenyl rings! of side La50.139 nm con-
nected as shown in Fig. 1, i.e., two adjacent vertices of
parent~central! ring are bonded to one vertex of the twoside
rings by bonds whose length, at equilibrium, isLb
50.15 nm. In our scheme, each vertex of the hexagon
thought to be occupied by a fictious atom of massMCH
513 amu representing a carbon-hydrogen pair~C-H!. The
choice of such a fictious atom, with its renormalized ma
greatly simplifies the computer simulation but presents so
drawbacks:~i! in the real molecule the two couples of carb
atoms connecting the rings are not bonded to hydrogen
oms, while in our model we consider all the 18 vertic
having the same massMCH so that the total molecular mas
is overestimated~234 rather than 230 amu! and ~ii ! the mo-
g
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ments of inertia of the model rings are smaller than the r
ones the hydrogen atoms being too close to the ring cen
Nevertheless, we expect only minor effects on the ove
dynamics from the previous simplification.

The three rings of a given molecule interact among the
selves by anintramolecularpotential, such potential being
chosen~i! to preserve the molecule from ‘‘dissociation;’’~ii !
to give the correct relative equilibrium positions for the thr
rings; and~iii ! to represent the real intramolecular vibration
spectrum as close as possible. The interaction among di
ent molecules, actually among the rings pertaining to diff
ent molecules, is accounted for by a site-site pairwise ad
tive potential energy of the~6-12! Lennard-Jones type, eac
site being one of the hexagons vertices.

To sum up, the total interaction potential energy is writt
as the sum of anintermolecularand anintramolecularterm,

Vtot5Vinter1Vintra . ~1!

The first term can be written explicitly as

Vinter5
1

2 (
iÞ j

(
jj8

(
l l 8

VLJ~ u r̄ i jl 2 r̄ j j8l 8u!, ~2!

wherer̄ i jl is the position of thel th atom (l 51, . . . ,6) in
the jth ring (j51, . . . ,3, hereafterj51 indicates the par-
ent ring! belonging to thei th molecule (i 51, . . . ,N), and

VLJ~R!54eF S s

RD 12

2S s

RD 6G . ~3!

The optimal choice of the two intermolecular force para
eters,e ands, will be discussed later.

In principle, theintramolecular interaction potential can
be expressed in terms of the degrees of freedom descri
the center of mass positions (R̄j , j52,3) and orientations
~e.g., the set of Eulerian angles! of the side rings with respec
to the parent ring. However, for computational purposes, i
simpler to express the intramolecular potential in terms
orthonormal unit vectors attached to each ring or better
terms of quantities built from these vectors. With referen
to Fig. 2 the sets of unit vectors for each ring$ l̂ j ,m̂j ,n̂j% are
defined as

l̂ j5~1,0,0!,

m̂j5~0,1,0!,

n̂j5~0,0,1!,

i.e., l̂ j andm̂j are orthogonal unit vectors in the ring plan
while n̂j is the normal to that plane.

The unit vectors that are parallel to the ring-ring bonds
equilibrium are given by

ū25 1
2 ~ l̂ 21A3m̂2!,

ū35 1
2 ~2 l̂ 31A3m̂3!,

ū1(2)5
1
2 ~ l̂ 11A3m̂1!,
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ū1(3)5
1
2 ~2 l̂ 11A3m̂1!.

The positions of the four carbon atoms that link the th
rings, i.e.,P̄1(2) and P̄1(3) in the parent ring andP̄2 and P̄3
in the side rings, are given by, with respect to their ri
centersR̄j , P̄1(2)2R̄15Laū1(2) , P̄1(3)2R̄15Laū1(3) , P̄2

2R̄25Laū2, and P̄32R̄35Laū3.
Finally, it is useful to define four further interaction site

two pertaining to the parent ring,S̄1(2)5R̄11Lcū1(2) and
S̄1(3)5R̄11Lcū1(3) and two pertaining to the side rings~2
and 3, respectively!, S̄25R̄22Lcū2 andS̄35R̄32Lcū3. Here
Lc5La1Lb/2, so that at the equilibrium positionS̄1(2)[S̄2

andS̄1(3)[S̄3. The variable we have introduced will be use
to simply express the different contributions to the intram
lecular potential in Secs. II A–II C.

A. Stretching along the ring-ring bonds and
between the side rings

The fluctuations of the distances among the centers
mass of the three rings are accounted for by introducing th
‘‘springs.’’ The parent-side ring stretching implies the elo
gation of a C-C bond, which is expected to have a h
stiffness. The corresponding potential in harmonic appro
mation is written as

VS5c1@ uP̄1(2)2 P̄2u2Lb#21c1@ uP̄1(3)2 P̄3u2Lb#2. ~4!

FIG. 2. Model geometry: each phenyl ring is represented b
rigid hexagon of sideLa50.139 nm and the equilibrium bon
length isLb50.150 nm.C1,C2,C3 represent the origins of the ref

erence frames fixed with the rings;ū2 ,ū3 ,ū1(2) ,ū1(3) are the vec-

tors parallel to the ring bonds;l̂ 1 andm̂1 are two versors identifying

the parent ring plane;P̄2 ,P̄3 ,P̄1(2) ,P̄1(3) are the positions of the

carbon atoms bonding together the rings;S̄2 ,S̄3 ,S̄1(2) ,S̄1(3) are four
interaction sites introduced to force the rings towards the copla

equilibrium condition; the symbolsP̄A and P̄B have been intro-

duced to identify the anglesP̄22 P̄1(2)2 P̄A and P̄32 P̄1(3)2 P̄B .
e

-

of
e

h
i-

On the other hand, no direct chemical bond is present
tween the two side rings, and we expect a less stiff spring
the fluctuation of the distance between the side ring cent
We model this interaction by

VB5c2@ uR̄22R̄3u2~2Lc!#
2. ~5!

The determination of the force constantsc1 andc2, as well
as the others we are going to introduce, will be discus
later.

B. Tilt of the ring-ring bond

In the OTP crystal structure@15#, the bond anglesP̄2

2 P̄1(2)2 P̄1(3) andP̄32 P̄1(3)2 P̄1(2) are 123.6° and 123.0°
respectively, while the anglesP̄22 P̄1(2)2 P̄A and P̄3

2 P̄1(3)2 P̄B are 118.4° and 117.4°~see Fig. 2! Further, in
the isolated molecule, the ring-ring bonds are forced ou
the plane of the parent ring so that the dihedral angleF

5 P̄22 P̄1(2)2 P̄1(3)2 P̄3 is 5.2°. This lack of planarity is
due to the little asymmetry introduced by the difference b
tween a carbon bonded to a hydrogen and a carbon bond
a carbon of another ring. In our model, all these angles at
equilibrium are set equal to 120° andF equal to 0.

We model the restoring forces for these angles by us
the scalar product of the unit vectorsū2 andū1(2) ~as well as
that of ū3 andū1(3)). Sinceū2•ū1(2)5ū3•ū1(3)51at equilib-
rium, the quadratic term in the small oscillation approxim
tion is given by

VT1
5c3~12ū2•ū1(2)!1c3~12ū3•ū1(3)!. ~6!

However, this term is not enough to ensure the coplanarit
the vectorsū2 andū3 with the parent ring; to force the ring
towards the coplanar equilibrium condition we make use
the ‘‘sites’’ S̄2 andS̄1(2) ~as well asS̄3 andS̄13) introducing
between them a spring of vanishing equilibrium length:

VT2
5c4uS̄1(2)2S̄2u21c4uS̄1(3)2S̄3u2. ~7!

C. Rotation of the side rings along the ring-ring bond

Inside the intramolecular dynamics we expect that a c
cial role is played by the rotation of the side rings plan
around the ring-ring bonds@15,16# in interfering or modify-
ing the intermolecular relaxation processes. The relev
variables describing this motion are the two angles$f2 ,f3%
between the normals to the side ring and parent ring pla
In the crystalline structure, the two side rings have sligh
different angles, 42.4° and 62.0°@15#. However, we model
the disordered condensed phases~liquid and glass! by using
as equilibrium angle values those of the isolated molec
i.e., 54.0°, as discussed below. We have to remark that
isolated molecule symmetry implies two isoenergetic co
figurations separated by a finite barrier as is qualitativ
illustrated in Fig. 3. We performed anab initio calculation of
the single molecule potential energy surface as a function
f2 and f3 with all the other internal degrees of freedo
fixed to their equilibrium values. Such calculation consists
the minimization of the Hartree-Fock energy over the Gau
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ian basis set 3-21G. For each atomic species the inner sh
made up of three Gaussians while the valence shell is a li
combination of two Gaussian orbitals plus one Gaussian
bital; the minimization was carried out by the standard pa
age Gaussian 94. In Fig. 3 a contour plot of the Hartree-Foc
potential energy is shown as a function of the rotation ang
It is important to quote that this map has only a semiqua
tative meaning; the structure of the whole molecule is
reoptimized during the scan off2 andf3 angles. However,
a careful study, performed reoptimizing the whole molecu
structure, has been done around the saddle pointf25f3
590° and around the two equivalent minima that turn ou
be atf25f3554° andf25f35126°. From this calcula-
tion the barrier height has been estimated to beVs /kB
5580 K and, from this value, it is possible to envisage
nature of the rotational motion at the temperatures of in
est: the two side rings can pivot in phase around the bo
crossing from one minimum to the other degenerate o
Moreover, they can perform librational out-of-phase motio
of ~approximatively! harmonic type.

In order to represent this potential surface we express
in-phase rotation of the two side rings with a high-order~6th!
polynomium and the out-of-phase rotation in the harmo
approximation. For this purpose we use as primary variab
the scalar productsn̄1•n̄2 andn̄1•n̄3 @their equilibrium value
being (n̄1•n̄2)eq5(n̄1•n̄2)eq5a050.59# and to disentangle
the in-phase from the out-of-phase motion, we introduce
two variables

a5
n̄1•n̄21n̄1•n̄3

2
,

~8!

FIG. 3. Rotational energy: each point has been determined b
ab initio Hartree-Fock calculation of the potential energy surface
a function of the rotational anglesf1 andf2 ~expressed in degrees!
with all the other degrees of freedom fixed to their equilibriu
values; the energy is expressed in Hartree units~1 Hartree5 27.2
eV!. We indicate byA the isolines ranging from 0.0505 to 0.054
mHartree with an incrementD150.005 mHartree, byB the ones
from 0.055 to 0.095 mHartree, withD250.05 mHartree, and by C
those from 0.5 to 1 mHartree withD350.5 mHartree. This figure
has to be considered only from a semiquantitative point of view
explained in the text.
l is
ar
r-
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e

b5
n̄1•n̄22n̄1•n̄3

2
.

The final form of the ‘‘internal rotation’’ potential will be

VR5VR1
~a!1VR2

~b!, ~9!

with

VR1
~a!5b1a21b2a41b3a6, ~10!

VR2
~b!5c6b2. ~11!

The parametersb1 , b2, and b3 describing the in-phase
rotation potential are derived according to the following pr
cedure. In the harmonic approximation, in proximity of th
equilibrium positionao for the scalar products, it must hol

VR1
~a!'c5~a2ao!2, ~12!

and taking into account that the barrier height must be eq
to Vs , we have the following conditions:

VR1
~ao!52Vs ,

VR1
8 ~ao!50,

VR1
9 ~ao!52c5 ,

implying

b152
Vs

ao
2

1
c5

4
12b3ao

4 ,

b25
c5

4ao
2

23b3ao
2 ,

b35
1

ao
4 S 2

Vs

ao
2

1
c5

4 D . ~13!

III. FORCE CONSTANTS

We can finally write our internal model potential like

Vintra5VS1VB1VT1
1VT2

1VR1
1VR2

, ~14!

this potential is parametrized by the set of six free coe
cients$ck% whose actual value can be tuned in order to o
tain arealistic free molecule vibrational spectrum. Indeed, in
the small oscillations approximation, we can determine
values of the coefficients$ck% by diagonalizing the dynami-
cal matrix and fitting the resulting eigenfrequenciesvDIAG

l to
the lowestfrequenciesvHF

l obtained by a Hartree-Fock ca
culation of the vibrational frequencies in the electron
ground state of the isolated molecule.

We have 18 eigenvalues for the dynamics of three rin
(l51, . . . ,18) butactually onlyNe512 eigenvaluesvDIAG

l

are nonvanishing, the other being associated with the tra
lations and rotations of the molecule as a whole.

an
s

s



tia
ly

fo

-

ted
een

to-
ef.

ules

op-
the

tions
f
the
ure

the

all
for
ites
gs

ex-
ous
of
the
g a

on-
the

he

of

do
a-

ach
its
s
-

tion
d

a

r-

if

n

nd
k

e
c

ion
ula

616 PRE 62S. MOSSA, R. Di LEONARDO, G. RUOCCO, AND M. SAMPOLI
More explicitly, the set$ck% is obtained by minimizing,
by the standard Levenberg-Marquardt algorithm@17#, the er-
ror function

(
l51

Ne

~vDIAG
l 2vHF

l !2 ~15!

where, for a given set of$ck%, the quantitiesvDIAG
l are the

solution of the eigenvalues problem@18#

uV̂2v2T̂u50. ~16!

HereV̂ andT̂ are the Hessian matrixes of the second par
derivatives of the potential and kinetic energy, respective
with respect to the translational and rotational degrees
freedom of the three rings.

In Table I are reported the values of the coefficients$ck%
determined by the minimization together with the values

TABLE I. Values of the internal potential coefficients dete
mined by a least square minimization of the error function, Eq.~15!.
The coefficientsck are the force constants associated with the d
ferent intramolecular potential terms; thebk , derived from the$ck%
via the Eq.~13!, describe the form of the in-phase rotational pote
tial according to Eq.~10!.

c1 1.36310216 J / nm2

c2 6.06310217 J / nm2

c3 2.44310219 J
c4 2.65310217 J / nm2

c5 4.23310219 J
c6 7.01310219 J

b1 3.62310220 J
b2 24.11310219 J
b3 6.92310219 J

TABLE II. Free molecule vibrational frequencies: in the seco
column are reported the valuesvHF determined by a Hartree-Foc
calculation of the ground state of the isolated molecule~we consider
only the 12 lowest eigenvalues!; in the third column are shown th
frequenciesvMD corresponding to the different peaks of the spe
trum determined from the atomic velocity autocorrelation funct
calculated by means of a preliminary molecular dynamics sim
tion of the isolated molecule (e50) at T51 K.

vHF (cm21) vMD (cm21)

1 49 55
2 54 85
3 63 99
4 97 148
5 114 165
6 140 172
7 256 273
8 271 302
9 291 306
10 358 376
11 386 409
12 428 436
l
,

of

r

$bk% derived from Eqs.~13!. The corresponding set of fre
quencies is shown in Table II wherevMD are the frequencies
derived from a computer simulation on a system of isola
molecules at low temperature. These frequencies have b
identified via the peaks of the spectrum of the velocity au
correlation function. Other model details are reported in R
@19#.

IV. COMPUTATIONAL DETAILS

We have studied a system composed of 108 molec
~324 rings, 1944 interaction centers!; the sample is large
enough to neglect finite size effects on the investigated pr
erties with reasonable computation times. The values of
parameters entering the site-site Lennard-Jones interac
were determined by preliminary simulations: the value oe
were firstly determined by comparing the computed and
experimental self-diffusion coefficients versus temperat
@34# in the range 380 K<T<440 K; the value ofs was
estimated by tuning the static structure factor so to place
first maximum in the right position@32#. Successive itera-
tions led toe/kB514 K ands50.4 nm. To speed up the
calculation of the intermolecular potential and to assure
the torques to be estimated in a consistent way, the cutoff
LJ interactions is applied between rings centers, i.e., the s
are considered not interacting when they pertain to rin
whose center distance is larger thanr c.3(s1La)
51.6 nm.

At this stage a remark about the rotational potential
pressed in Eq.~9! is needed: such potential presents a seri
drawback since the intrinsic ambiguity due to the parity
the scalar products involved can force the side rings in
wrong positions. This problem can be bypassed introducin
new term in the intramolecular potential that gives zero c
tribution to the energy when the molecule is close to
equilibrium position. If we define the productw
5( l̂ 1•n̂2)( l̂ 1•n̂3), and we setc7510c6 ~the actual value of
c7 is irrelevant, it must only be able to force the rings in t
right way!, we can write

VA5H c7w2 if w.0

0 otherwise.
~17!

This term has been activated only during the preparation
the initial configuration~i.e., at high temperature!; during the
thermalized evolution of the system we expect molecules
not drive too much away from their equilibrium configur
tion and then this term to be always equal to zero.

To integrate the equations of motion we have treated e
ring as a separate rigid body, identified by the position of
center of massR̄i j and by its orientation expressed in term
of quaternionsq̄i j @20#. The standard Verlet leap-frog algo
rithm @20# has been used to integrate the translational mo
while, for the most difficult orientational part, the refine
algorithm due to Ruocco and Sampoli@21# has been em-
ployed; such choices allow a very stable integration with
relatively long time step.

The rotational dynamical problem can be written as

-

-

-

-
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dJ̄i j

dt
5 t̄ i j~$R̄j j8%,$q̄ j j8%!,

~18!
dq̄i j

dt
5M̂~$q̄i j%!• J̄i j

whereJ̄i j is the angular momentum of ringj in the molecule
i, t̄ i j is the torque acting on it, andM̂i j is the inverse of the
inertia tensor in quaternion coordinates.

The expression of the torques is simplified as the ro
tional part Vrot of the intramolecular potential energy ha
been expressed in terms of suitable scalar products writte
the general forms5 v̄1 /uv̄1u• v̄2 /uv̄2u. Therefore the value o
the torquestv1

and tv2
associated with the degree of fre

dom corresponding to the angle arccos(s) can then be evalu
ated by@18#

tv1
52tv2

52
]Vrot

]s
~ v̄13 v̄2!. ~19!

The leap-frog algorithm for the rotational motion report
can be written in the form@21#

J̄i j~ t1t8!5 J̄i jS t2
Dt

2 D1 t̄ i j~ t !S Dt

2
1t8D ~20!

with 0<t8<Dt,

q̄i j~ t1t!5q̄i j~ t !1E
0

t

dt8M̂@ q̄i j~ t1t8!# J̄i j~ t1t8!

~21!

with 0<t<Dt,

J̄i jS t1
Dt

2 D5 J̄i jS t2
Dt

2 D1 t̄ i j~ t !Dt. ~22!

The crucial point is that the dependence of the matrixM̂i j
on the angular variables implies the need of using a time
Dt8 to perform the numerical integration appearing in E
~21!, smaller thenDt used for the center of mass~cm! inte-
gration. In turn, the value ofDt is limited by the highest
vibrational frequency of about 450 cm21. In our case, the
chosen values ofDt52 fs andDt85Dt/5 are found to be
sufficiently small to reduce the fluctuations of the total e
ergy to a negligible fraction of the kinetic energy. It is im
portant to note that the use of the smallerDt8 does not in-
crease significantly the CPU computational time since
time-consuming part in each MD step is the calculation
the forces and torques which are kept fixed during the in
gration of Eq.~20!.

We considered a wide temperature range spanning
liquid phase and reaching the region close toTc as shown in
Table III in which the whole set of simulation times is r
ported. During the different temperature runs, the size of
cubic box has been rescaled in order to keep the syste
the experimental density which, forT>Tg , can be fitted by
the polynomium@22#

r~T!51.298327.0031024T21.2331027T2, ~23!
-
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wherer is in g/cm3 andT in K. At each temperatureT we
have organized the simulations following this scheme:

The system was coupled for a timet resc, chosen in a
somehow arbitrary way, to a stochastic heat bath, i.e.,
velocities of the rings were replaced following a logarithm
pattern with the velocities drawn from a Boltzmann distrib
tion corresponding to such temperature.

At this point the system was at the desired temperat
and we let it perform amicrocanonicaltime evolution~con-
stant energy! for a periodt term comparable with the experi
mental structural relaxation timeta at the same temperature
in such a way we expect every slow degree of freedom of
system to be correctly thermalized and we control that th
was no drift in temperature and the degree of energy con
vation ~fluctuations are always less than 1% of the kine
energy!.

We considered the final system configuration obtained
this way as a good equilibrium starting state for a molecu
dynamics trajectory. At each temperature we perform th
different runs: the first one 20 ps long with a 431023 ps
configuration saving time has been used to compute
small-time dynamical behavior of the system; a second
640 ps long with a 431022 ps saving time has been use
for some intermediate frequency analysis. The last one, w
lengthtprod and saving timetsave dependent on temperature
has been used to calculate static quantities and the long-
behavior of the system.

All the calculations have been performed on a cluster
four a-CPU with a frequency of 500 MHz; every nanose
ond of simulated dynamics needed approximately 24 h
CPU time.

V. RECALL OF MAIN RESULTS
FROM THE MODE-COUPLING THEORY

A great improvement to our understanding of the glas
state of matter has come from the extension of the theore

TABLE III. Simulation runs details: at each temperatureT, the
system is coupled for a timet resc to a stochastic heat bath, then
evolves freely, at constant energy, for a timet term . At the end of
this process, we consider the final configuration to be in a g
equilibrium state and we start a trajectorytprod ps long, saving a
system configuration everytsave ps.

T tresc t term tprod tsave

~K! ~ps! ~ps! ~ps! ~ps!

443 100 1000 1000 0.1
433 100 1000 1000 0.1
420 100 1000 1000 0.1
410 100 1000 1000 0.1
389 200 1400 2000 0.1
372 200 1400 2000 0.1
351 200 1400 2000 0.1
331 500 2000 4000 0.2
321 500 3000 6000 0.3
313 500 3000 6000 0.3
300 500 3000 10 000 0.5
294 500 5000 10 000 0.5
283 500 5000 10 000 0.5
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building of the mode-coupling theory~MCT! @2,3# devel-
oped for theequilibrium description of the dynamics o
simple, i.e., monatomic, liquid to the study of the glas
state. Although such theory is the only microscopic appro
to the glass transition leading to many predictions on
experimental data, it is still at the center of a strong deb
and some questions stay open. In fact, even if the real ra
of validity of MCT for the study of molecular liquids ha
been cleared in recent years~see, among others, Refs.@23–
25,44##, some experimental results seem to contradict fun
mental predictions of the idealized version of MCT, such
the presence of the so-called knee characterizing the
frequency behavior of the light scattering susceptibil
@26,27# or the presence of a cusp in the nonergodicity para
eter @28#.

In this section we sum up the main predictions of t
so-called ideal MCT where it is hypothesized a comple
dynamical freezing and the so-called ‘‘thermally activat
hopping’’ processes are neglected; such predictions will
compared with our simulation data. In the ideal MCT t
glass formation is interpreted as adynamical transitionfrom
an ergodic to a nonergodic behavior at a crossover temp
tureTc . MCT provides a self-consistent dynamical treatme
@2# for the density correlation function of an isotropic syste

F~q,t !5
1

N
^drq* ~ t !drq* ~0!&, ~24!

where N is the number of the particles,dr5r2^r&,
drq(t)5( i 51

N exp@iq̄•r̄ i(t)#, and r̄ i(t) is the position of par-
ticle i at time t. MCT proposes a particularansatzfor the
memory kernel in the related integrodifferential generaliz
Langevin equation, such kernel is coupling nonlinearly
density fluctuations with one another. If the coupling i
creases upon lowering the temperature, the resulting dyn
cal feedback leads to a progressive slowing down of the d
sity fluctuations until they become completely frozen at
critical temperatureTc . The ideal MCT describes the beha
ior as much as the temperature approachesTc , i.e., the pa-
rameters5(Tc2T)/Tc is small~however, real comparison
have to be made fors not too small, in contrast to the case
scaling laws in phase transitions!. For temperatureT>Tc ,
F(q,t) is characterized by two step decays taking place
different time scales and the theory gives specific predicti
for such different time regions.

The first one, theb-processregion, is centered around
time ts which is predicted to scale likets}uT2Tcu1/2a with
0,a,0.5 and to be bounded in the intervalt0!ts!ta ,
wheret0 is the time scale of the microscopic dynamics a
ta is the structural rearrangement time scale. In this reg
the factorization propertyholds, in the sense that the dens
correlation function can be written as

F~q,t !5 f ~q!1h~q!AusuG6~ t/ts!, ~25!

where f (q) is the nonergodicity parameter~i.e., Debye-
Waller factor for collective correlators orMössbauer-Lamb
factor for single-particle correlators!, h(q) is an amplitude
independent of temperature and time, and the6 in G6 cor-
responds to time larger or smaller with respect tots . So, the
time dependence of the correlation functions is all embed
h
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in the q-independentfunction G6 , namely spatial and tem
poral correlations result to be completely independe
G6(t) is asymptotically expressed by two power laws, r
spectively thecritical decayand thevon Schweidler law@2#,
characterized by thetemperature and momentum indepe
dentexponentsa andb,

G6S t

ts
D5H ~ t/ts!2a, t0!t!ts

2~ t/ts!b, ts!t!ta .
~26!

Herea is the same exponent of the power divergence ofts at
Tc and it is related to the exponentb (0,b<1) via the
equation

G2~12a!

G~122a!
5

G2~11b!

G~112b!
, ~27!

whereG is the gamma function.
The second time region is the so-calleda region where

the second decaying step takes place. This region is c
nected to the collective structural relaxations and asympt
cally the theory predicts the validity of the well-knowntime-
temperature superposition principle; it states that, on time
scales of the same order of magnitude asta , the following
scaling law holds at every temperatureT:

F~q,t !5FS t

ta~T! D . ~28!

In other words, the correlation functions of any observab
at different temperatures can be collapsed into a master c
when the time is scaled witht/ta . Moreover, MCT predicts
that this master curve can be fitted by a Kolrausch-Willia
Watts function~stretched exponential!

F~q,t !. f ~q!expH 2S t

ta
D baJ . ~29!

The a time scaleta depends on temperature through
power law of the form

ta}~T2Tc!
2g, ~30!

where theq-independentexponentg is related to the power
exponentsa andb of the b region by the relation

g5
1

2a
1

1

2b
. ~31!

The inverse of the diffusion constantD21(T) is predicted to
scale liketa @2# and consequently it follows Eq.@30#.

Up to now, all dynamical results reviewed are universa
the sense that they are predicted to hold for the correlator
every observable with nonzero overlap with density; in p
ticular this is true for both the one-particle and the collect
density correlation functions. Nevertheless important diff
ences are predicted to hold for theq dependence in these tw
cases: in the former casef (q) andh(q) depend smoothly on
q, in the latter one they oscillate, respectively, in phase a
out of phase with the static structure factorS(q). Moreover,
ba is predicted to be a smooth function ofq in the one-
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particle case; at variance, it shows pronounced oscillation
phase withS(q) in the collective case.

VI. RESULTS

A. Thermodynamics

In this section some thermodynamical time-independ
results are shown such as potential, kinetic, and total en
~see Table IV and Fig. 4!. The interest in these results
clarified by the following argument: in computer simulatio
dealing with the glass transition it is possible to define
temperature often namedTg2sim @29# at which one-time
quantities show some sort of discontinuity. Such disconti
ity, whose position depends on the thermal history of
system, represents the thermodynamical point at which
system undergoes a glass transition on the time scale o
computer simulation, falling out of equilibrium. It is clea
from Fig. 4 that no discontinuity is present, i.e.,Tg2sim of

FIG. 4. Temperature dependence of the energies tabulate
Table IV,Etot ~circles!, Vtot ~squares!, andT ~triangles up! together
with the internalVintra ~triangles down! and the intermolecular
Lennard-JonesVinter ~diamonds! contributions toVtot .

TABLE IV. Some thermodynamical results: temperaturesT ef-
fectively measured, total energyEtot , total potential energyVtot,
and kinetic energyT.

T Etot Vtot T
~K! ~kJ/mol! ~kJ/mol! ~kJ/mol!

443 30.00 23.1560.72 33.1261.29
433 28.59 23.7860.69 32.3761.26
420 26.88 24.5960.69 31.4761.26
410 25.47 25.2560.69 30.7261.20
389 22.44 26.6960.63 29.1361.14
372 19.98 27.8360.60 27.8161.08
351 17.10 29.1560.57 26.2861.02
331 14.34 210.4760.54 24.8160.96
321 12.75 211.2260.54 24.0060.96
313 11.73 211.6760.51 23.4360.93
300 9.96 212.5160.51 22.4760.90
294 9.15 212.9060.48 21.9960.90
283 7.59 213.5960.48 21.1860.84
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our simulations is less than the lowest temperature stud
and then we have a good chance to have well-thermal
results. Nevertheless, whether or not the system is in e
librium can be checked onlya posteriori by comparing the
total simulation time with the measured relaxation time.

From the linearity ofE(T) we deduce a specific heatc(T)
constant in the temperature range investigated and equ
140 J K21 mol21; such value must be compared with th
experimental value of 341.7 J K21 mol21 @30#. It is possible
to explain the inconsistency between the two values keep
in mind that our MD value is a classical~nonquantic! result
and, more important, we are neglecting many (;78) degrees
of freedom concerning the deformations of the phenyl rin

B. Structure

In general the static structure of a fluid is well describ
by thepair distribution function@31#,

g~r !5
V

N2 K (i
(
j Þ i

d~r 2u r̄ i j u)L . ~32!

In computer simulations@20#, we can identify the distance
u r̄ i j u with different quantities. In Fig. 5 we report som
g(r )’s at T5300 K where we have considered asu r̄ i j u the
distances between the carbon atoms belonging to diffe
rings ~A! and between the center of masses of rings~B! and
molecules ~C!; both total ~solid line! and intermolecular
~dashed line! contributions are shown in order to separate
internal molecular structure and the mean structural org
zation of the whole bulk sample. In Fig. 5~B! a two peak

in

FIG. 5. Pair static distribution functions atT5300 K calculated
on atoms~A!, ring centers of mass~B!, and molecular centers o
mass~C!; full lines represent the total contribution of both intram
lecular and intermolecular distances, dashed lines only the inter
lecular contribution.
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structure is present: the first sharp peak is placed ar
.0.42 nm corresponding to the mean distance betw
rings belonging to the same molecule; the second one
intermolecular origin, is placed atr .0.6 nm. It is worth
noting that such distance is less than the greatest intra
lecular C-C distance (.0.7 nm). Moreover, the molecula
centers of massg(r ) also show a large value on distanc
less than 0.7 nm, giving the evidence of a strong packing
the molecules. All these features appear to be approxima
temperature independent. Such packing depends strong
the orientational internal configuration of the molecule
namely on the positions of the two side rings with respec
the parent one; the computation of the probability distrib
tion of the scalar products among the versorsl̂ j , m̂j , and
n̂j , introduced in Sec. II, is somehow instructive in th
sense.

In Fig. 6 the distribution functions for the quantitie
l̂ 1•n̂2,3, n̂2•n̂3 , n̂1•n̂2,3 are shown. The first two distribu
tions are practically temperature independent and give
only informations on the correctness of the simulated geo
etry: they are sharply peaked on the the correct equilibr
positions of about 0.71 and 0.69, respectively. At varian
with the distribution ofx5n̂2•n̂3 and of n̂1•n̂2,3 that are
symmetric aroundx50, the distribution ofl̂ 1•n̂2,3 does not
present the symmetric peak on negative values so tha
can argue that the auxiliary termVA worked correctly. The
most interesting distribution is the third one in which t
peak intensity~the peak is correctly placed ata050.59) is
higher the lower the temperature, as shown in Fig. 7, in
cating therefore that the correspondent degree of free
~the in-phase motion ofn̂1•n̂2,3) is more and more frozen o
its equilibrium value with decreasing the temperature.

We have seen that in the isolated molecule the rotatio
motion of the two side rings can be separated in two con
butions: an out-of-phase harmonic libration and an in-ph
pivoting around the bonds which permits rings to cross fr
one equilibrium position to the other degenerate one. I
clear from the structure of the distribution function in pro
imity of n̂1•n̂2,350 shown in Fig. 8 that the time needed f

FIG. 6. Static distribution functions of the scalar produc

n̂2•n̂3 ~triangles!, l̂ 1•n̂2,3 ~circles!, and n̂1•n̂2,3 ~squares! evaluated
at T5280 K.
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the transition from a minimum to the other one will be long
lowering the temperature; moreover, Fig. 8 can be con
ered as a restatement of the energy map shown in Fig
since the intensity of the maximum in zero is a measure
the transition probability between the two minima. Su
fenomenology will be clarified in future communication
where we will study the relaxation processes associated
the angular degrees of freedom.

The space Fourier transform ofg(r ) is thestatic structure
factor. In a poliatomic system this quantity is defined as

S~q!}
1

N (
i , j

bibj^e
iq̄•( r̄ i2 r̄ j )&, ~33!

where the coefficientsbi are thescattering lengthsin prin-
ciple different for each species involved.

TheS(q) has been determined experimentally for OTP
neutron scattering@32,33#, and the following main features
have been observed.

FIG. 7. Intensity of the peaks of the static distribution functi

of n̂1•n̂2,3 at T5440,390,330,280 K~from bottom to top!. An en-
largement of this figure aroundx50 is shown in Fig. 8.

FIG. 8. Temperature dependence of the static distribution fu

tion of n̂1•n̂2,3 near the saddle point positionn̂1•n̂2,350 at T
5440,420,390,370,350,330,320,300,280 K~from top to bottom!.
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~i! In contrast to atomic systems its main peak is split
two subpeaks placed around 14 and 19 nm21.

~ii ! In the q→0 region, by lowering the temperature
reduction of scattering intensity is observed due to the
crease of the isothermal compressibilityxT @xT}S(q50)#.

~iii ! By increasing the density, a slight shift of the pe
position to higherq values is observed.

~iv! By decreasing temperature, the height of the pe
around 19 nm21 increases while the intensity of the peak
14 nm21 remains nearly unaffected, except for a slight
duction mostly connected to the decrease inxT .

In Fig. 9 we show our results for the structure facto
calculated assuming as scattering centers the molecules
the rings centers of mass withbi51; every point is an aver
age on all the independent Miller indices corresponding
the givenq.

It is much more interesting to make a comparison amo
the MD results and the experimental data obtained by n
tron @Fig. 10~A!# and to test what is expected for x-ray sca
tering @Fig. 10~B!#.

In evaluatingS(q) by computer simulation for a compar
son with neutron data, we have to take into account the c
tribution due to both carbon and hydrogen atoms; H ato
are not considered in our dynamics; nevertheless, it is p
sible to place them in fixed positions on the line extend
from the center of the ring through a carbon atom at a fix
C-H distance computed to bedC-H50.107 nm. In this case
we would have to consider different scattering lengths for
two species,bH andbC; nevertheless, they are both positiv
and about the same magnitude so that the productbibj in Eq.
~33! is an ineffective constant.

In Fig. 10~A! the calculatedS(q) at T5300 K is shown
and compared with the data of Ref.@32# at T5324 K; in this
paper the authors show their results in terms of thecoherent
scattering cross section(ds/dV) measured in m2 which is
proportional to ourS(q). In order to compare the two resul
we renormalized the experimental data in such a way
values of the two curves coincide at largeq. The high-q
region of the calculatedS(q) appears to be in excellen
agreement with the experiment but no double peak struc

FIG. 9. Static structure factors atT5300 K calculated on the
molecular~solid line! and ring centers of mass~dashed line!; eachq
point is the average over all the independent Miller indices co
sponding to it.
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is present at low momenta. In particular the MD calculat
first peak presents a small bump at about 18 nm21; this is
better seen in Fig. 11 where we show the small-q part of
S(q) calculated atT5280 K together with the error bar
estimated by means of the statistical fluctuation of the d
The noise cannot allow us to determine the correct struc

-

FIG. 10. Top: Comparison among molecular dynamics struct
factor ~solid line! calculated taking into account both carbon a
hydrogen atoms as scattering centers and experimental stru
factor ~dashed line! measured by neutron scattering~from @32#!.
Bottom: Molecular dynamics structure factor~solid line! calculated
taking into account only carbon atoms; this should be the cor
result to be compared with the experimental structure factor m
sured by x-ray scattering.

FIG. 11. Enlargement of the low-momenta region ofS(q) cal-
culated atT5280 K: the error bars are estimated from the fluctu
tion of the single configurationS(q)’s.
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of the main peak. It is worth noting, moreover, that at th
low temperature the characteristic relaxation time is of or
1 ns, so that, considering a simulation run 10 ns long,
have only about ten really independent system configu
tions.

In order to calculate the simulatedS(q) as is expected by
x-ray scattering, we consider only the carbon atoms; als
this case no double-peak structure is observed in the data
a clear prepeak appears at aq value less than theq of the first
maximum, since the high-q behavior is similar to the neutro
case, as shown in Fig. 10~B!.

C. Self-diffusion coefficient

An important quantity to consider in the study of the d
namics of our system at a microscopic level is themean-
squared displacement~MSD! defined as

^r 2~ t !&5
1

N (
i j

^uR̄i j~ t !2R̄i j~0!u2&, ~34!

whereR̄i j(t) is the position of the center of mass of the rin
j in the moleculei at time t; from the MSD is possible to
determine theself-diffusion coefficient D(T) via the Einstein
relation

D5 lim
t→`

1

6t
^r 2~ t !&. ~35!

The temperature dependence of the MSD is shown in
12; each curve follows the usualcage-effectscenario. At
small time ~less than 0.2 ps! they present thet2 behavior
corresponding to the ballistic motion; at long time the diff
sive linear time dependence of Eq.~35! is found. At inter-
mediate times a small region is present where MSD st
almost constant and whose duration increases with decr
ing temperature; on these time scales molecules are tra
in cages built up by their neighbors, and they can only

FIG. 12. Temperature dependence of the mean-square disp
ment ^r 2(t)& calculated on ring centers of mass at all temperat
investigated exceptT5440,420 K~higher temperature on top!. In-
set: linear scale plot of the mean-square displacement at som
lected temperatures~open symbols! together with the long-time lin-
ear behavior~dashed lines!.
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brate in these limited regions, the length of the plateau be
a measure of the mean lifetime of the cages.

The calculated values of the self-diffusion coefficient a
shown in Table V and plotted in Fig. 13~open circles! as a
function of temperature, together with the power-law te
perature dependence~solid line! predicted by the MCT

D21~T!}~T2Tc!
2g. ~36!

A three parameters fit to these data has been performed
taining the following values:

Tc
(D)527863, ~37!

g (D)51.860.1, ~38!

In the same figure we also show the experimental data~full
squares! @34,35# that are well represented by Eq.~36!
~dashed line! with the valuesg52.360.1 and Tc5292
62 K.

ce-
e

se-

FIG. 13. Temperature dependence of molecular dynamics~open
circles! and experimental~full triangles! diffusion coefficients to-
gether with the power-law fits in the form of Eq.~36! ~solid and
dashed lines, respectively!; we show also the MD data shifted of 2
K ~open squares! as explained in the text.

TABLE V. Temperature dependence of the molecular dynam
self-diffusion coefficientD.

T (K) 1073D (cm2/s)

443 106.2
433 89.3
420 81.3
410 66.6
389 49.3
372 37.3
351 27.3
331 12.5
321 9.4
313 6.3
300 3.4
294 0.8
283 0.6
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It is clear from these values and from Fig. 13 that a d
crepancy is present among the lower temperatures diffu
behavior of the simulated and real system, respectively;
is most likely due to the fact that we have tuned the value
the LJ potential parameterse ands in order to reproduce the
high-T diffusion properties of the real system. However, it
worth noting that it is possible to reproduce quite well t
experimental results on the whole investigated tempera
range shifting the molecular dynamics points at temperatu
;20 K above their true values. In other words, we have
assume that our actual thermodynamic point is shifted w
respect to the real one; from now on, whenever we will co
pare our molecular dynamics results with the experime
ones, our calculated points will be shifted 20 K above
measured temperature and the competing temperatures
be indicated asT̄c . On these grounds from the previou
study of the self-diffusion properties of our model we obta
T̄c

(D)529863 to be compared with the experimental val
Tc529065.

A different way to determine the parameters entering
the power law reported in Eq.~36! is possible, even if not
independent from the previous one; it is based on the st
of the non-Gaussianparametera2(t) defined as@36,37#

a2~ t !5
9

5

^r 4~ t !&

^r 2~ t !&2
21, ~39!

where the mean-square displacement^r 2(t)& and^r 4(t)& are,
respectively, the second and forth momenta of theVan Hove
self-correlation function

Gs~ r̄ ,t !5
1

N (
i j

^d„r̄ 2R̄i j~ t !1R̄i j~0!…&. ~40!

The parameter a2(t) quantifies the degree of non
Gaussianity ofGs( r̄ ,t) in space as a function of time and it
normalized in such a way that, ifGs( r̄ , t̃ ) was a Gaussian
function in space at a given timet̃ , we would havea2( t̃ )
50. The time dependence ofa2(t) at all temperatures inves
tigated is shown in Fig. 14. We are not interested here in

FIG. 14. Time dependence of the non-Gaussian parametera2(t)
for all temperature investigated~lower temperatures on top!.
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specific time dependence of such function but only in
fact thattamax

, the position of the maximum ofa2(t), has the
power dependence onT similar to that of Eq.~36! @36# ~see
Fig. 15!. A fit to this quantity performed in the same way a
before gives us the values

T̄c
ta5300614, ~41!

g ta51.460.3, ~42!

compatible with the values determined by the temperat
dependence ofD, even if the error bars are larger in this cas

D. Single particle dynamics

Comparisons of thecoherent~collective! and incoherent
~self-! density fluctuations dynamics data measured by
ferent techniques~neutron time-of-flight and backscatterin
spectroscopy, photon correlation spectroscopy, depolar
Raman and Rayleigh-Brillouin light scattering! with the
main predictions of MCT have been reported in literatu
with great details@38–43#. In this section we will study the
single particle density fluctuation dynamics of our model a
we will compare our results with the experimental resu
mainly contained in Refs.@38,39# and with the MCT predic-
tions.

The single particle dynamics of the model is embedded
the incoherent self-intermediate scattering functiondefined
as

Fs~q,t !5
1

N K (
i ,j

e2 i q̄•[ R̄i j(t)2R̄i j(0)]L ~43!

where, again,R̄i j(t) is the position of the center of mass o
the ringj in the moleculei at time t. At every temperature
considered two sets of configurations, produced with t
different storing times as described in Sec. IV, have be
used to reconstruct the whole curve. We considered thT
dependence ofFs(q,t) at the two momentum valuesq
514,19 nm21 corresponding to the first and second pea
of the static structure factor, averaging on values ofq falling
in the interval q6Dq with Dq50.2 nm21. Finally, we

FIG. 15. Power-law fit of the temperature dependence of
position tmax of the maximum of the non-Gaussian parameter.
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spanned atT5300 K the whole interestingq space in the
interval q52430 nm21 ~averaging on the values ofq fall-
ing in the same interval 2Dq wide!.

In Fig. 16 we showFs(q,t) for nearly all temperatures
investigated atq5qmax514 nm21; all the curves decay to
zero, i.e., the length of all the simulations allows the fluctu
tions to become completely uncorrelated. We are in
‘‘good’’ thermodynamical equilibrium at every temperatur
at least on the space scales corresponding to the invers
qmax.

At temperatures lower thenT5330 K the relaxation fol-
lows clearly the predicted two step pattern: on microsco
time scales the correlation is quadratic in time, this tim
scale being the one on which the intramolecular vibratio
happen; on intermediate time scales we observe the for
tion of a plateau, whose height is the nonergodicity para
eter f (q) and whose length in time is comparable to the o
of the plateau in the MSD̂r 2(t)&. On long-time scales we
observe the structural relaxation in the form of a stretch

FIG. 16. Temperature dependence ofFs(q,t) calculated atq
514 nm21 for all temperatures investigated exceptT
5410,430 K~lower temperatures on top!.

FIG. 17. Temperature dependence of the stretching param
ba ~circles! and of the nonergodicity parameterf q ~squares!; the
horizontal lines indicate the mean values ofba ~dashed line! and f q

~dot-dashed line!.
-
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exponential. At the highest temperatures no double patter
visible anymore and only a nearly exponential relaxation c
be recognized. A stretched exponential fit@see Eq.~29!# on
the structural time scale (a process! gives us the temperatur
dependence of the three free parametersba , ta , and f (q).

The parameterba ~circles! is shown in Fig. 17; it appears
to be nearlyT independent for temperature lower thanT
5400 K and its mean valueba.0.8 ~dashed line! has to be
compared with the experimental valueba50.6. For tem-
perature in the higher region it tends toward the valueba
51 ~errors are clearly much more greater!; such behavior is
due to the fact that in this temperature region it is no lon
possible to sharply separate the long-time relaxation reg
from the microscopic short-time one. The study of the te
perature dependence of the nonergodicity parameterf (q) in
the interesting region is not possible due to our limited te

ter

FIG. 18. Temperature dependence ofta at q514,19 nm21

~circles and squares, respectively! together with the power-law fits

with T̄c
ta5296 K andgta52.0 ~solid and dashed lines, respe

tively!; also the experimental shear viscosityhs}ta data~full tri-
angles! are reported~see@22# and reference therein! multiplied by a
factor 1.5 ps/Poise. Molecular dynamics results have been sh
20 K with respect to the measured temperatures, as explaine
text.

FIG. 19. Fs(q,t) at q514 nm21 rescaled tot/ta ; all the
curves verify the time-temperature superposition principle.
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perature range which do not permit to observe the expe
low-temperature (T,Tg) harmonic Debye-like behavior
and the onset of the anomalous decrease off (q) with in-
creasingT for Tg,T<Tc . Our data suggest usTc,283 K
and the mean valuef (q).0.7 ~dot-dashed line! agrees with
the experimental value determined atT5290 K shown later
in Fig. 21.

It is worth testing the power-law temperature depende
Eq. ~30! for the relaxation timeta ; the calculated relaxation
times ~circles! shifted 20 K with respect to the measure
temperatures, as explained above, are plotted in Fig. 18
gether with the experimental~full triangles! shear viscosity
hs data (hs is expected to be proportional tota) of Ref. @22#
and the theoretical fitted curve~solid line! of parameters

T̄c
ta529667, ~44!

gS52.060.4 ~45!

to be compared with the experimental results of Ref.@38#,
Tc529065 K and g52.55. These values are compatib

FIG. 20. Q-dependence ofFs(q,t) at T5300 K for q
52n nm21 with n53, . . . ,15~from top to bottom!.
ed

e

o-

,

within the statistical error, with the values calculated fro
the diffusion data, so we can conclude that the diffusive
havior and the self-dynamics of our model follow the sam
critical power law withT̄c.297 K andg.1.8.

Also the values ofta for q519 nm21 ~squares! corre-
sponding to the second peak of the static structure func
are reported with the theoretical curve. A fit has been p
formed~dashed line! only on the prefactor keeping fixed th
values of the other two parameters in order to show t
these data also are compatible with the same power law.
crucial observation here is that the values of the two para
etersTc andg are effectivelyq independent and they can b
considered universal for our model, as predicted by
MCT.

The relaxation timeta can be also used to test the tim
temperature superposition principle Eq.~28!. In Fig. 19 the
curves are shown in function of the rescaled timet/ta and it
is clearly seen that all the curves tend to collapse on the s
master curve as predicted by the theory.

FIG. 22. Q-dependence of the inverse relaxation timeta
21 ; mo-

lecular dynamics data~open circles! have been multiplied by a fac
tor 6.5 in order to overlap the experimental@38# data~full circles!,
as explained in the text. The solid line is the correct small-q behav-
ior ta

21(q).6Dq2, where 6D520.431025 nm2/ps.
d
y-

x-

a

FIG. 21. Q dependence of the stretching an
non-ergodicity parameters: Left: molecular d
namics~circles! and experimental~filled circles,
from @38#! values of the coefficientba as deter-
mined by the stretched exponential fits. Right: e
perimental values~filled squares! of the noner-
godicity parameter @38# together with the
molecular dynamics results as determined by
MCT analysis of botha ~squares! and b ~tri-
angles! regions and the Gaussian fit~solid line! to
a-region results withs25365 nm22.
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FIG. 23. Left: Temperature dependence of t
product taD at q51.4 nm21. Right: q depen-
dence atT5300 K of taDq2. These quantity are
expected to be constant.
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We now quantify theq dependence of the self-dynamic
long-time behavior of the system atT5300 K. In Fig. 20
are reported the curvesFs(q,t) for values ofq52n nm21

with n53, . . . ,15; thechoice of the temperature valueT
5300 K has been due to the need of ‘‘well-thermalize
results in a large range ofq. Also in these data are the wel
defined two-step behavior and we can calculate the long-t
stretched exponential fit parameters; the resulting values
shown in Figs. 21 and 22. In Fig. 21 the values ofba ~left
side! and f (q) ~right side! are shown.

ba ~open circles! appears to be a smooth function ofq
and it tends, for large values ofq, to the experimental~full
circles! evaluated value of 0.6. Such behavior is quite g
eral ~see, for instance, Ref.@37#! and can be easily explaine
by the following argument@37#: for large values ofq, corre-
sponding to length scales of the same order of magnitud
the cages dimension, the dynamics becomes slower
slower approaching the cage dynamics described through
von Schweidler exponentb. At variance, in the opposite limi
of small q, we consider a diffusive dynamics on large d
tances; at such length scales the decay of the self-de
fluctuations is of the usual purely exponential for
exp (2Dq2t) corresponding toba51 ~see Fig. 27!. At this
stage, however, we have not a reasonable explanation o
disagreement with the experimental data.

In the right side of Fig. 21 theq dependence of the non
ergodicity parameterf (q) is also shown as calculated from
the short-time limit of thea process~squares!, from the
long-time part~triangles! of the b region ~as we will see
below!, and from the experimental data~full squares! @38#; it
seems clear a good agreement between our values an
experimental results. The data appear to be monotonic
creasing as increasingq and this dependence is expected
be approximately Gaussian; in Fig. 21 a Gaussian fit~solid
line! in the form exp(2q2/2s2) with s.19 nm21 to the
molecular dynamicsa region data is also shown. It is clea
that theq range considered here is too limited to really d
cide on the validity of this functional form~a linear approxi-
mation would work well too!, a good estimate of the erro
bars lacking in this case.

In Fig. 22 theq dependence ofta
21 is shown ~circles!
e
re
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together with the experimental data@38# ~full circles!. Mo-
lecular dynamics points have been rescaled by a fa
ta

MD(T5280 K)/ta
MD(T5300 K).6.5 to take into accoun

the fact, as discussed above, that our system temperatu
20 K higher than the real one. The correct square-law beh
ior at low-q ta

21(q).6Dq2 @see Eq.~47!# is also shown as a
solid line; hereD is the self-diffusion coefficient and 6D
520.431025 nm2/ps.

Finally, in Fig. 23, two products of some calculated qua
tity, expected to be constant, are shown; on the left-hand
the statementD21(T)}ta(T) is proven forq5qmax ~good
at highest temperature!. On the right-hand side we show th
producttaq2D evaluated atT5300 K, which is nearly con-
stant up toq.18 as expected, this value being appro
mately the crossover point among the correct quadratic
havior and the asymptotically linear regime as we fou
above.

Let us now probe the MCT conclusions about theb re-
gion which is predicted to follow the power laws of Eq.~26!:

FIG. 24. Power laws in theb region forq58,10,12,14 nm21;
critical decay of exponenta ~dot-dashed lines! and the von
Scweidler law of exponentb ~dashed lines! have been reported with
simulation points.
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FIG. 25. Q dependence of the power-laws e
ponents. Left: the experimental values~filled
circles! for b(q) are plotted together with the mo
lecular dynamics values forb(q) ~open circles!
anda(q) ~open squares!; the mean values for ou
results are shown by the dashed and dot-das
lines, respectively. Right: our values for theq de-
pendence of the exponentg determined by the
relationg51/2a11/2b.
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we show here the results at fixed temperatureT5300 K for
values ofq561n nm21 with n50, . . .,17.

We fit all the curves by two power functions on the tim
rangesu1 andu2,

Fs~q,t !5H f q1c1t2a, tPu1

f q2c2tb, tPu2
~46!

where u15@0.15:2# (ps) andu25@3:20# (ps); some se-
lected fits are shown in Fig. 24 and they seem to work qu
well.

Some observations are needed on the following analy
a great uncertainty stems from the choice of the fit ran
~i.e., from the choice ofu1 andu2) due to the consideration
of a crossover region between two processes not sha
separated in time; moreover, an analogous problem ca
be excluded between the microscopic region and the crit
decay region characterized by the exponenta. Such difficulty
implies a great uncertainty on the determination off (q)
which is supposed to be considered as the long-time limi
the b process and the short-time behavior of thea relax-
ation. At this point it is clear that, lacking a careful err
analysis on the data points, such fits can only state th
parametrization of the data in the form of Eq.~46! is possible
which is consistent with the theory predictions@39#, the cur-
rent values of the determined parameters being consid
only from a qualitative point of view.

Nevertheless the values of such fitting parameters, sh
in Figs. 25 and 26, appear to be in good agreement with
values obtained from the experimental data. In Fig. 25
shown ~left! the values of the power exponentsa ~squares!
and b ~circles! and of the exponentg ~triangles! calculated
by means of Eq.~31! ~right side!; the mean values are 0.3
0.5, 2.6, respectively, to be compared with the experime
determined valuesa.0.31 ~dot-dashed line!, b.0.52
~dashed line!, g.2.55 ~solid line! @38#.

It is clear from these results that one of the main pred
tions of MCT, namely theq independence ofa and b is
verified in the limit of the error fluctuations. Moreover, it
important to note that the parameterg, given by Eq.~31!,
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remains constant, as expected, being its mean value 2
clearly compatible with the value 2.55 determined from e
perimental data@38#; nevertheless, this value overestimat
the value g52.060.4 at q514 nm21 previously deter-
mined by the fit to thea region. Furthermore,b(q) is always
less than the determined value of the large-q value of the
stretching parameterba50.6 ~see Fig. 21! verifying another
MCT prediction, namely 0,b,ba .

From Eqs.~25!, ~26!, and~46! the two parametersc1(q)
andc2(q) result to be proportional toh(q), the proportion-
ality constants being dependent ons, ts , a, and b. From
Tc.280 K we haveAs.0.3 while we choose as a goo
estimate ofts the intersection point of the two power laws o
Fig. 24, obtainingts.2 ps; if we put a50.31 and b
50.52 we finally obtain the factors 2.7 and 2.3 forc1 andc2,
respectively.

Unfortunately these value are not able to correctly resc
our data on the experimental results, the correct values b
0.7 and 4 as shown in Fig. 26; this result could be expec
considering the great uncertainties on the parameter va
used for the estimate. Nevertheless, simulated data a
quite well with the experimental points at low-q presenting a
strong bending toward a constant value in the regionq
.16 nm21.

To complete the picture of the self-motion in our mod
we test the validity of theGaussian approximationto
Fs(q,t) in the limit of small momentumq. The first-order
term of the expansion ofFs(q,t) in powers ofq2 gives@31#

Fs~q,t !.expH 2
q2

6
^r 2~ t !&J . ~47!

In Fig. 27 some curves atT5330 K and different values o
q are shown together with the corresponding approximatio
such approximation seems to work quite good and it
comes worse on increasingq as expected.

At the end, we show in Fig. 28 all the time scales rela
to centers of mass motion investigated up to now as a fu
tion of temperature. Full circles and squares indicate, resp
tively, the experimental structural relaxation timetexpt

V2F(T),
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following the Vogel-Fulcher law, and the experimental i
verse self-diffusion coefficientDexpt

21 (T) multiplied by a fac-
tor 531025 cm2 in order to superimpose totexpt

V2F(T). The
open symbols are used to represent the molecular dyna
results:tMD

s ~diamonds! is the relaxation time of the one
particle dynamics atq514 nm21 multiplied by a scale fac-
tor 1.5 andDMD

21 (T) ~triangles up! is the inverse of the dif-
fusion coefficient rescaled by the same fac
531025 cm2 we used for the experimental points. All th
molecular dynamics points have been shifted of 20 K w
respect to the measured temperatures; it is quite clear
both experimental and molecular dynamics data points
lapse on a well-defined master curve. Our model is, at le
a good model for centers of mass dynamics of OTP.

VII. CONCLUSIONS

In this paper we have introduced an interaction poten
model capable of describing the intramolecular dynamics

FIG. 26. Q dependence of the experimental~full circles! coeffi-
cient h of Eq. ~25! and of our fitting parametersc1 ~triangles!, c2

~squares!; note that our results have been rescaled by a factor
and 5, respectively in order to superimpose to experimental da

FIG. 27. Gaussian approximation toFs(q,t) at T5330 K for
q52,3,4,6,8,1,1.2 nm21 ~from top to bottom!.
ics
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the fragile glass-former OTP; such a model appears to
much more efficient with respect to the ones introduced
far in the sense that it represents a much better comprom
between the resulting computing needs and its capability
mimic all the complexities of the dynamical behavior of th
real system.

It takes into account not only the translational and ro
tional dynamics of the molecules as a whole but also
stretching along the molecular bonds, and the tilt of t
bonds, the rotations of the side rings with respect to
parent ring. It is tuned in such a way to reproduce the i
lated molecule vibrational spectrum. In this way, most like
we have introduced the degrees of freedom whose inter
causes the complex dynamical behavior of the real syst
We have, then, presented the results of molecular dynam
computer simulations of such a model; we mainly studied
static structure of a bulk sample, the self-diffusion prop
ties, and the self-part of the density-density correlation fu
tions.

The static structure factor simulated in such a way is co
pared with the experimental measures and shows a g
agreement with the neutron scattering data, except for
very low momenta behavior~due, probably, to the finite size
of our system!. Moreover, we have no evidence of the spl
ting of the main peak in two subpeaks placed atq
514,19 nm21, only the first one being clearly visible. Thi
luck may be due mainly to the temperature range inve
gated ~the intensity of the second subpeak increases w
lowering temperature!.

The self-diffusion properties of the system have been
vestigated through the mean-squared displacement and
self-diffusion coefficient temperature behavior; compariso

.7

.

FIG. 28. Master plot of the temperature dependence of all
centers of mass time scales discussed: we have used full sym
for experimental results and open symbols for molecular dynam
data. Molecular dynamics points collapse exactly on the ma
curve identified by the experimental data if they are multiplied b
scale factor~taking into account the momentum dependencies of
relaxation timetMD

s and the correct dimensionality of the diffusio
coefficients! and the corresponding temperatures are shifted 2
above the measured ones, as discussed in the text. In partic
tMD

s ~open diamonds! is multiplied by a factor 1.5, and the self
diffusion coefficientsDexpt

21 ~full squares! andDMD
21 ~open triangles!

are rescaled by a factor 531025 cm2.
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with experimental self-diffusion data give a very good agr
ment, showing the evidence of compatible critical dynam
behavior in approaching the instability temperatureTc of
MCT which is here found to beTc527863 to be compared
with the experimental valueTc529065 determined by a
MCT analysis of the dynamics of the density fluctuations
discrepancy which is most to likely ascribed to the interm
lecular LJ potential parameters (s,e) that have been tuned i
the temperature region close toT5300 K. Moreover, we
considered the critical temperature dependence of the
called non-Gaussianity parametera2(t) obtaining compat-
ible values for the power-law parameters.

The self-dynamics of the density fluctuations has be
studied in great detail on the whole accessible time wind
spanning the range from a time scale of the order of f
femtoseconds to times of order of some nanoseconds; m
over, its dependence on temperature and momenta has
investigated. All the correlation curves calculated show
typical two step behavior predicted by MCT, the first one
short time being associated with the so-called ‘‘micr
scopic’’ processes, i.e., the vibrational motion of molecu
in the cage built up by their neighbors; the second one be
associated with thea process which controls the structur
rearrangements of molecules on a long-time scale.

The critical dynamics on ana time scale approaching th
correspondentTc is in good agreement with experiment
findings; indeed the estimate values for our model of
t-
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exponentg52.060.4 must be compared with the exper
mental valueg52.5.

The q dependence atT5300 K in the momentum range
q56230 nm21 has been analyzed in terms of a stretch
exponential fit; the values of the determined parameters
in good agreement with the ones calculated by fitting
experimental points and with the MCT expected behavio

To summarize, in the present work we have shown t
our model for OTP fluid is mimicking rather well the cent
of mass dynamical features of the real system, giving res
in most cases fully compatible with the experimental fin
ings. It is clear that its ability to help us in the understandi
of the most exotic dynamic features of the real systems a
in particular, of the relevance of the internal degrees of fr
dom on the translational dynamics, has not been fully d
played in this paper; problems such as the collective dyn
ics density fluctuation behavior, the rotational dynamics,
origin of the unusual fast relaxational dynamics, and ma
others, will be addressed in future works@19#.
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