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Molecular dynamics simulation of the fragile glass-former orthoterphenyl:
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We present a realistic model of the fragile glass-former orthoterphenyl and the results of extensive molecular
dynamics simulations in which we investigated its basic static and dynamic properties. In this model the
internal molecular interactions between the three rigid phenyl rings are described by a set of force constants,
including harmonic and anharmonic terms; the interactions among different molecules are described by
Lennard-Jones site-site potentials. Self-diffusion properties are discussed in detail together with the tempera-
ture and momentum dependencies of the self-intermediate scattering function. The simulation data are com-
pared with existing experimental results and with the main predictions of the mode-coupling theory.

PACS numbgs): 64.70.Pf, 71.15.Pd, 61.25.Em, 61.20.

[. INTRODUCTION allow the identification of the microscopic mechanisms un-
derlying the different observed relaxation processes.

In recent years a renewed interest on the glass transition In this paper we want to address the problem to set up a
phenomenon has motivated extensive experimental and thetealistic” potential for a glass model system capable of
oretical works(see[1] and reference ther@inOn the theo- &ccounting for the internal molecular degrees of freedom.
retical side, new descriptions of the glass transition havé‘Mond the glass-forming molecular liquids characterized by
been developed: they emphasized either the dyngasithe an extremely rich dynamical behavior, the orgafinagjile [1]

. i lass former orthoterphenyl (OTP) (T,,=329 K, T
mode-coupling theoryMCT) of Gotze[2] (the reader may 9:290 K, Tg=243 K) IOhas yreceived r(nuT:h attention from

also consult Ref[3]) and Schilling and Kob[3] or the  poth experimental and numerical simulation points of view.
coupled oscillators model of Ngai and Tsdrd] or the ther-  The structure of the OTP molecule, shown in Fig. 1, is
modynamic(as the first principle computation based on aknown from neutrori8] and x-ray[9] diffraction studies; in
replica formulation of5] or the inherent structure formalism condensed state the OTP molecules are bound together only
computation of 6]) aspects of the transition itself. by van der Waals forces, which resemble the Lennard-Jones
A common feature of all these theories is they have bee@nes often used by most theories and computer simulations
developed for “model systems,” often monoatomic models.@iMing to study the glass transition problem.
The comparison of the theoretical results with the real ex- DU€ t0 its structural complexity, if we would like to ob-

periment are, therefore, complicated by the trivial observatdin reliable results to be compared with experimental data

tion that in the real world the glass-forming systems areVe need to take into account not only the translations of the

d t of “molecul ¢ A i th molecular center of masses and the rotations of the mol-
made out of “molecular systeéms.” AS a consequence IN & a5 a5 a whole, but also intramolecular motions like

current literature there is a large debate on the applicabilityétretching along the molecular bonds, tilt of the bonds, rota-
of the theoretical predictions to the experimental outcomejon of the side rings with respect to the central one, and so
and the more stringent tests of the theories come from moon. In other words, we need to describe the dynamics of the
lecular dynamicgMD) works. liquid at theatomiclevel. On the contrary, in order to set up
As an example, it is highly debated in literature the origin,
in a molecular glass former, afecondaryrelaxations that
can be observed by several experimental techniques beside
the well-known microscopic and structural dynamisge,
among others, Ref7] and references thergirFor instance,
fast relaxations(i.e., in the 10%? s range have been ob-
served in several glasses and it is not yet clear if their origin
is related to the molecular center of mass motion, as MCT
would explain in terms of the8 process, or rather to rota-
tional or intramolecular dynamics. It is clear the crucial role
that MD simulations can play to solve this specific problem.
If it is possible to build arealistic model able to take into
account the internal degrees of freedom, as well as the trans-
lational dynamics, computer simulations allow one to access
any observable quantity of the system, and also those not FIG. 1. Molecular structure of OTPQgH,,); it is constituted
directly measurable by present experimental techniquesy three phenyl rings, the two side rings being attached to the
Such possibility, together with the physical intuition, could parent(i.e., central ring by covalent bonds.
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a computational scheme which is affordable in not-too-longments of inertia of the model rings are smaller than the real
time with the nowadays computer capability, we need theones the hydrogen atoms being too close to the ring center.
simplestmodel potential able to capture the relevant featuredNevertheless, we expect only minor effects on the overall
of the dynamical behavior of the real system. dynamics from the previous simplification.

In the literature numerical studies of OTP have been pro- The three rings of a given molecule interact among them-
posed making use of different techniques ranging fltan  selves by arintramolecular potential, such potential being
monic lattice dynamic§10] to molecular dynamics simula- chosen(i) to preserve the molecule from “dissociation(ii)
tions on the atomic level based on a general force fieldo give the correct relative equilibrium positions for the three
provided by the standard program Alchemy [Il1]. Never-  rings; and(iii) to represent the real intramolecular vibrational
theless, to our knowledge, only two studies based on molecispectrum as close as possible. The interaction among differ-
lar dynamics simulations aholecular model®f OTP have ent molecules, actually among the rings pertaining to differ-
been proposed so far. They are as follows. ent molecules, is accounted for by a site-site pairwise addi-

(i) Lewis and co-worker$12,13 represent the molecule tive potential energy of thé-12) Lennard-Jones type, each
like a three-sites complex, each site playing the role of @site being one of the hexagons vertices.
whole phenyl ring, without internal dynamics and an inter- To sum up, the total interaction potential energy is written
molecular interaction of the Lennard-Jongs)) type. This  as the sum of amtermolecularand anintramolecularterm,
model takes into account only the dynamical behavior asso-
ciated with the translations of the molecular center of masses Viot=Vintert Vintra - 1)
and with the rotations of the molecules as a whole.

(i) Kudchadkar and Wiedtl4] propose a more realistic
model with the “true” structure of the molecule. The inter- 1 o
molecular interaction is of LJ type and, as internal degrees of Vinter=§ E > Vis([Tie —Tier o)), 2)
freedom, only the rotational dynamics of the side rings with 1= g s
respect to the central one is taken into account. These inter- _

The first term can be written explicitly as

nal degrees of freedom are effectively the most relevantwherer;., is the position of the’th atom ¢'=1, ...,6) in

nevertheless, the authors parametrize the potential in suchtle éth ring (§=1, ...,3, hereafte¢=1 indicates the par-

way that the side rings are, at equilibrium, in a configurationent ring belonging to theéth molecule (=1, ... N), and

that corresponds to a saddle point in the molecular energy 1 5

surface. V,,(R)=4e (g) _(g 3)
The model potential we are going to introduce is much LJ R R

more efficient in mimicking the complexity of the dynamical

behavior of the real system. The paper is organized as folThe optimal choice of the two intermolecular force param-
lows: in Sec. Il we introduce the intramolecular model po-éters,e and o, will be discussed later.

tential; in Sec. Ill we explain how we calculated the force In principle, theintramolecularinteraction potential can
constants in order to reproduce a realistic isolated moleculbe expressed in terms of the degrees of freedom describing
vibrational spectrum. In Sec. IV we present some computathe center of mass position®R{, £=2,3) and orientations
tional details and in Sec. V we note some of the main well-(e.qg., the set of Eulerian ang)esf the side rings with respect
established predictions of the ideal mode-coupling theoryo the parent ring. However, for computational purposes, it is
used in Sec. VI to test the center of mass dynamical behawsimpler to express the intramolecular potential in terms of
ior. In Sec. VI we discuss our MD simulation results mainly orthonormal unit vectors attached to each ring or better in
with regard to the study of the diffusion and self-dynamicterms of quantities built from these vectors. With reference

properties. Section VII contains an overall discussion and the, Fig. 2 the sets of unit vectors for each ri{fg ,rAng ’ﬁg} are

conclusions. defined as
Il. THE MOLECULAR MODEL |§=(1,0,0),
In our model the OTP molecule is constituted by three r“ngz(o,lyo),
rigid hexagons(phenyl ring$ of side L,=0.139 nm con-
nected as shown in Fig. 1, i.e., two adjacent vertices of the ﬁ§=(0 0,1)

parent(centra) ring are bonded to one vertex of the tsidle

rings by bonds whose length, at equilibrium, is —_— - . . ;

:(?15 r31/m In our scheme egch vertexqof the hexag?)ns ils',e" IgAand m; are orthogonal unit vectors in the ring plane,
thought to be occupied by a fictious atom of madsy while n, IS the normal to that plane. . .

~13 amu representing a carbon-hydrogen [§@iH). The T_he unit vectors that are parallel to the ring-ring bonds at
choice of such a fictious atom, with its renormalized mass,eqUIIIbrIum are given by
greatly simplifies the computer simulation but presents some

— 4= .
drawbacks(i) in the real molecule the two couples of carbon Up=z(lo+ \/§m2),
atoms connecting the rings are not bonded to hydrogen at- — .
oms, while in our model we consider all the 18 vertices Us=3(—Ta+\3my),

having the same madd ., so that the total molecular mass - R R
is overestimated234 rather than 230 amand (ii) the mo- Uyy=3(l1+ J3my),
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On the other hand, no direct chemical bond is present be-
tween the two side rings, and we expect a less stiff spring for
the fluctuation of the distance between the side ring centers.
We model this interaction by

Vg=C,[|Ry—Rg| — (2L) ]2 (5

The determination of the force constamtsandc,, as well
as the others we are going to introduce, will be discussed
later.

B. Tilt of the ring-ring bond

In the OTP crystal structurgl5], the bond angles,
_51(2)_51(3) andE3_El(3)_El(2) are 123.6° and 123.0°,
respectively, while the angle,—P;;—P, and Ps
—Py(3— Pg are 118.4° and 117.4¢see Fig. 2 Further, in
the isolated molecule, the ring-ring bonds are forced out of
the plane of the parent ring so that the dihedral anble
_ _FIG. 2. Model ggometry: each phenyl ring is re_pre_sented by %32_51(2)_31(3)_53 is 5.2°. This lack of planarity is
rigid hexagon of sidel,=0.139 nm and the equilibrium bond 4,6 15 the Jittle asymmetry introduced by the difference be-
length isL,=0.150 nm.C,,C,,C represent the origins of the ref- oo 5 carbon bonded to a hydrogen and a carbon bonded to
erence frames fixed with the rings;,us,Us(2),Ui(s) are the vec- 3 carbon of another ring. In our model, all these angles at the
tors parallel to the ring bond$; andm; are two versors identifying  equilibrium are set equal to 120° add equal to 0.

the parent ring planeP;,P3,Py(z),P1(s) are the positions of the We model the restoring forces for these angles by using
carbon atoms bonding together the rings;S;, Sy (2), Sy (s) are four  the scalar product of the unit vectars anduy ) (as well as
interaction sites introduced to force the rings towards the coplanatrhat 0fuz anduy zy). SINCEU,- Uy (2= Ug- Uy (5= Lat equilib-

equilibrium condition; the symbol®, and Pg have been intro-  yjym the quadratic term in the small oscillation approxima-
duced to identify the angleB,— Py ;)— P, andP3;—Py(3)—Pg. tion is given by

— N ~ V1 =Ca(1—Usy- Uy +Ca(1—Us- Uy (ay). 6
U1(3):%(_|1+\/§m1)- T, 3( 2 1(2)) a( 3 1(3)) (6)

However, this term is not enough to ensure the coplanarity of

The positions of the four carbon atoms that link the threethe vectorsl, andug with the parent ring; to force the rings

. . — . — — towards the coplanar equilibrium condition we make use of
rings, i.e.,Pq(2y and Py 3, in the parent ring and®, and P the “sites” S. ands. Il asS. andS.) introduci
in the side rings, are given by, with respect to their ring" '€ SI€S S, andS, z) (as well asS; andS,,) introducing
= — — — — = — — between them a spring of vanishing equilibrium length:
CeﬂterSRQ Pl(Z[ R]j Laulg) , P1(3)_ R1: Lau1(3) , Pz
~Rp=Lall, andP3=Rs=LUs. : o V1, =C4Sy(2)~ Sol*+ €ul Sy~ Sal*. ()
Finally, it is useful to define four further interaction sites,
two pertaining to the parent rin =R;+L.u and
wo pet 9 P 95.1(2) e 1(2). C. Rotation of the side rings along the ring-ring bond
Si3)=Rit+ LUy @d two peLtalnmg_tolhe S|d_e rindg . _ _
and 3, respectivelyS,=R,— L .U, andS;= Rs— L .Ug. Here ' Inside .the intramolecular dyr)amlcs we expect that a cru-
Lo— Lot L2 that at th libri 0B =S cial role is played by the rotation of the side rings planes
¢~ LaTLp/s SO A .a € equil rllum posi |c@1.(2)—82 around the ring-ring bonds 5,16 in interfering or modify-
andS 3=S;. The variable we have introduced will be used jng the intermolecular relaxation processes. The relevant
to simply express the different contributions to the intramo-,griaples describing this motion are the two andlés, ¢}
lecular potential in Secs. Il A-II C. between the normals to the side ring and parent ring planes.
In the crystalline structure, the two side rings have slightly
_ o different angles, 42.4° and 62.015]. However, we model
A. Stretching along the ring-ring bonds and the disordered condensed phafigiid and glassby using
between the side rings as equilibrium angle values those of the isolated molecule,
The fluctuations of the distances among the centers ofe., 54.0°, as discussed below. We have to remark that the
mass of the three rings are accounted for by introducing threisolated molecule symmetry implies two isoenergetic con-
“springs.” The parent-side ring stretching implies the elon- figurations separated by a finite barrier as is qualitatively
gation of a C-C bond, which is expected to have a highillustrated in Fig. 3. We performed &b initio calculation of
stiffness. The corresponding potential in harmonic approxithe single molecule potential energy surface as a function of
mation is written as ¢, and ¢ with all the other internal degrees of freedom
o o _ _ fixed to their equilibrium values. Such calculation consists in
Vs=Ci[|P1(2)~ P2l = Lpl?+¢4[|P1(3y— P3| —Lp]% (4  the minimization of the Hartree-Fock energy over the Gauss-
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Ny-Nx—Ng1-N3

A= 2
The final form of the “internal rotation” potential will be
Vr=VR, (@) +Vg,(B), 9
& 50 2 with
] Vi,(@)=bya?+ bya’+bsal, (10
Vi,(B)=cefB. (11
NN SSSA The parameterd,, b,, andb; describing the in-phase
20 40 60 80 100 120 140 160 rotation potential are derived according to the following pro-
0, cedure. In the harmonic approximation, in proximity of the

equilibrium positione,, for the scalar products, it must hold

FIG. 3. Rotational energy: each point has been determined by an
ab initio Hartree-Fock calculation of the potential energy surface as
a function of the rotational angles; and ¢, (expressed in degrees
with all the other degrees of freedom fixed to their equilibrium @nd taking into account that the barrier height must be equal
values; the energy is expressed in Hartree uditslartree= 27.2  t0 V4, we have the following conditions:
eV). We indicate byA the isolines ranging from 0.0505 to 0.0545

Vi, (@) ~cs(a—ap)?, (12)

mHartree with an incremenk; =0.005 mHartree, byB the ones VRl( @o)=— Vs,
from 0.055 to 0.095 mHartree, with,=0.05 mHartree, and by C
those from 0.5 to 1 mHartree with;=0.5 mHartree. This figure Vi (a,)=0,
has to be considered only from a semiquantitative point of view as !
explained in the text. "

P Vi (a5)=2Cs,

ian basis set 3-21G. For each atomic species the inner shelliplying

made up of three Gaussians while the valence shell is a linear

combination of two Gaussian orbitals plus one Gaussian or- Vs  Cs
bital; the minimization was carried out by the standard pack- by=-— ﬁ+ 4
age Gaussian 94. In Eig@ a contour plot of the Hartree-Fock °

potential energy is shown as a function of the rotation angles.

+ 2b3ao4 f

It is important to quote that this map has only a semiquanti- b,= Cs —3bza,?,

tative meaning; the structure of the whole molecule is not 4ay?

reoptimized during the scan @f, and ¢ angles. However,

a careful study, performed reoptimizing the whole molecular 1 Vo Csg

structure, has been done around the saddle pdinrt ¢4 b3=F —; vy (13
[0} [0}

=90° and around the two equivalent minima that turn out to
be at¢,= ¢3=54° and¢p,= $p3=126°. From this calcula-
tion the barrier height has been estimated to \hgkg Ill. FORCE CONSTANTS
=580 K and, from this value, it is possible to envisage the
nature of the rotational motion at the temperatures of inter-
est: tr_le two side rings can pivot in phase around the bonds Vina=Vet+Ve+Vr. + Vi + Ve + Vg, (14)
crossing from one minimum to the other degenerate one. 1 2 1 2
Moreover, they can perform librational out-of-
of (approximatively harmonic type.

We can finally write our internal model potential like

phase mOtlon%his potential is parametrized by the set of six free coeffi-

cients{c,} whose actual value can be tuned in order to ob-

in- lr;]gggerz:gtrgﬁﬁstﬁgt tth:)sspé)(taern;laésq:;a;eh_vvig;(%ﬁ)ss thF"ain arealistic free molecule vibrational spectrutmdeed, in
In-p ! WO SICE rings wi '9 . the small oscillations approximation, we can determine the

polynomium and the out-of-phase rotation in the harmon'c\/alues of the coefficientsc,} by diagonalizing the dynami-
approximation. For this purpose we use as primary variables

— = — _ i Cal matrix and fitting the resulting eigenfrequenc«iﬁ‘gﬁAG to

the scalar products,-n; andn; - n [their equilibrium value ¢ |4 yestfrequenciess’. obtained by a Hartree-Fock cal-
being (13- N2)eq=(N1-N2)eq= @p=0.59] and to disentangle cylation of the vibrational frequencies in the electronic
the in-phase from the out-of-phase motion, we introduce th%round state of the isolated molecule.
two variables We have 18 eigenvalues for the dynamics of three rings

S (A=1,...,18) butactually onlyN,= 12 eigenvalueso} s
_ v ) are nonvanishing, the other being associated with the trans-

2 ’ lations and rotations of the molecule as a whole.

®)



616 S. MOSSA, R. Di LEONARDO, G. RUOCCO, AND M. SAMPOLI PRE 62

TABLE I. Values of the internal potential coefficients deter- {b,} derived from Egs(13). The corresponding set of fre-
mined by a least square minimization of the error function, (E§). quencies is shown in Table Il whess, are the frequencies
The coefficientscy are the force constants associated with the dif-derived from a computer simulation on a system of isolated
ferent intramolecular potential terms; the, derived from thec,} molecules at low temperature. These frequencies have been
via the Eq.(13), describe the form of the in-phase rotational poten-iqentified via the peaks of the spectrum of the velocity auto-

tial according to Eq(10). correlation function. Other model details are reported in Ref.

19].

c; 1.36x10 1° J/ nn? [19]

C, 6.06x 107 J/nn?

Cs 2.44x107 % J IV. COMPUTATIONAL DETAILS

C4 2.65<10° 7 J/nn?

Cs 4.23x 1019 J We_have studigd a syfstem composed of 108' molecules

Ce 7.01x10° 19 J (324 rings, 1944 interaction centgrdhe sample is large
enough to neglect finite size effects on the investigated prop-

by 3.62¢ 10~2° J erties with reasonable computation times. The values of the

parameters entering the site-site Lennard-Jones interactions
were determined by preliminary simulations: the valueeof
were firstly determined by comparing the computed and the
experimental self-diffusion coefficients versus temperature

More explicitly, the set{c,} is obtained by minimizing, [34] in the range 380 KT<440 K; the value ofc was

by the standard Levenberg-Marquardt algoritfii], the er- ~ €stimated by tuning the static structure factor so to place the
ror function first maximum in the right positiofi32]. Successive itera-

tions led toe/kg=14 K ando=0.4 nm. To speed up the

\ . calculation of the int_ermolet_:ular pote_:ntial and to assure all

)21 (@piac ™ WHE) (15  the torques to be estimated in a consistent way, the cutoff for
LJ interactions is applied between rings centers, i.e., the sites

where, for a given set ofc,}, the quantitiesv), .o are the ~aré considered not interacting when they pertain to rings

b, —4.11x10°1° J
by 6.92<10°1° J

Ne

solution of the eigenvalues probleh8] whose center distance is larger than=3(c+Ly)
=1.6 nm.
V- 2T|=0. (16) At this stage a remark about the rotational potential ex-

pressed in EQ9) is needed: such potential presents a serious

HereV andT are the Hessian matrixes of the second partiadrawback since the intrinsic ambiguity due to the parity of

derivatives of the potential and kinetic energy, respectivelytne scalar products involved can force the side rings in the
with respect to the translational and rotational degrees offong positions. This problem can be bypassed introducing a
freedom of the three rings. new term in the intramolecular potential that gives zero con-

In Table | are reported the values of the coefficigg ~ tribution to the energy when the molecule is close to the
determined by the minimization together with the values foréquilibrium  position. If we define the productw
=(l1-n5)(I1-n3), and we set,=10cq (the actual value of
TABLE Il. Free molecule vibrational frequencies: in the secondc is irrelevant, it must only be able to force the rings in the
column are reported the values,r determined by a Hartree-Fock right way), we can write
calculation of the ground state of the isolated mole¢wie consider
only the 12 lowest eigenvalugsn the third column are shown the
frequencieswyp corresponding to the different peaks of the spec- c,w? if w>0
trum determined from the atomic velocity autocorrelation function Va= . 17
o o 0 otherwise.
calculated by means of a preliminary molecular dynamics simula-
tion of the isolated moleculee&0) atT=1 K.

This term has been activated only during the preparation of

—1 -1
onr (CM) @mp_(cm ) the initial configuratior(i.e., at high temperatuyeduring the

1 49 55 thermalized evolution of the system we expect molecules do
2 54 85 not drive too much away from their equilibrium configura-
3 63 99 tion and then this term to be always equal to zero.
4 97 148 To integrate the equations of motion we have treated each
5 114 165 ring as a separate rigid body, identified by the position of its
6 140 172 center of mas®;; and by its orientation expressed in terms
7 256 273 of quaterniongy;; [20]. The standard Verlet leap-frog algo-
8 271 302 rithm [20] has been used to integrate the translational motion
9 291 306 while, for the most difficult orientational part, the refined
10 358 376 algorithm due to Ruocco and Samp¢fil] has been em-
11 386 409 ployed; such choices allow a very stable integration with a
12 428 436 relatively long time step.

The rotational dynamical problem can be written as
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dj o . TABLE lll. Simulation runs details: at each temperatdiethe
] T, g({R.g,},{q.g,}), system is coupled for a timg.s. to a stochastic heat bath, then it
dt ] J evolves freely, at constant energy, for a timg,,. At the end of
o (18 this process, we consider the final configuration to be in a good
dqig N — = equilibrium state and we start a trajectdry,q ps long, saving a
dt =M{dig}) - Jdig system configuration eveity,,. ps.
whereJ; is the angular momentum of ringjin the molecule (I) t(fe;)c t(tefsgﬂ t('”;)d t(sa;)e
i, 7¢ is the torque acting on it, amﬁflig is the inverse of the P P P P
inertia tensor in quaternion coordinates. 443 100 1000 1000 0.1
The expression of the torques is simplified as the rota- 433 100 1000 1000 0.1
tional partV,,; of the intramolecular potential energy has 420 100 1000 1000 0.1
been expressed in terms of suitable scalar products written in 410 100 1000 1000 0.1
the general forns=uv,/|v,|-v,/|v,|. Therefore the value of 389 200 1400 2000 0.1
the torquesr, andr,, associated with the degree of free- 372 200 1400 2000 0.1
dom corresponding to the angle arca)s¢an then be evalu- 351 200 1400 2000 01
ated by[18] 331 500 2000 4000 0.2
321 500 3000 6000 0.3
Nrot — — 313 500 3000 6000 0.3
oS T T, T T g (01X02). (19 300 500 3000 10000 0.5
294 500 5000 10000 0.5
The leap-frog algorithm for the rotational motion reported g3 500 5000 10000 05
can be written in the formp21]
— = Aty — [At wherep is in g/cn? and T in K. At each temperatur@ we
Bt =Jig| t= |+ 7ig(] 5+ 20 have o[;ganizegd the simulations following thips scheme:
The system was coupled for a timg., chosen in a
with 0=<t’'<At, somehow arbitrary way, to a stochastic heat bath, i.e., the
velocities of the rings were replaced following a logarithmic
- _ fT ’M[_- (t+t’)]T (t+t") pattern with the velocities drawn from a Boltzmann distribu-
Gt =g+ 0 v Ml 1% tion corresponding to such temperature.
(22 At this point the system was at the desired temperature
] and we let it perform anicrocanonicaltime evolution(con-
with 0= 7=<At, stant energyfor a periodt,.,, comparable with the experi-
B 0o At _mental structural relaxation time, at the same temperature;
Jigl t+ :Jig(t_ — |+ DAL, (22)  insuchaway we expect every slow degree of freedom of the
2 2 system to be correctly thermalized and we control that there

. was no drift in temperature and the degree of energy conser-

The crucial point is that the dependence of the maWix:  vation (fluctuations are always less than 1% of the kinetic
on the angular variables implies the need of using a time stegnergy.
At’ to perform the numerical integration appearing in Eq. We considered the final system configuration obtained in
(21), smaller themAt used for the center of massm) inte-  this way as a good equilibrium starting state for a molecular
gration. In turn, the value ot is limited by the highest dynamics trajectory. At each temperature we perform three
vibrational frequency of about 450 ¢rh In our case, the different runs: the first one 20 ps long with ax40 2 ps
chosen values oAt=2 fs andAt’=At/5 are found to be configuration saving time has been used to compute the
sufficiently small to reduce the fluctuations of the total en-small-time dynamical behavior of the system; a second one
ergy to a negligible fraction of the kinetic energy. It is im- 640 ps long with a 410 2 ps saving time has been used
portant to note that the use of the smallet’ does not in-  for some intermediate frequency analysis. The last one, with
crease significantly the CPU computational time since theengtht,,,q and saving times,,. dependent on temperature,
time-consuming part in each MD step is the calculation ofhas been used to calculate static quantities and the long-time
the forces and torques which are kept fixed during the intebehavior of the system.
gration of Eq.(20). All the calculations have been performed on a cluster of

We considered a wide temperature range spanning th@ur o-CPU with a frequency of 500 MHz; every nanosec-

liquid phase and reaching the region closd'taas shown in  ond of simulated dynamics needed approximately 24 h of
Table Il in which the whole set of simulation times is re- CPU time.

ported. During the different temperature runs, the size of the
cubic box has been rescaled in order to keep the system at V. RECALL OF MAIN RESULTS
the experimental density which, f@r=T, can be fitted by FROM THE MODE-COUPLING THEORY
the polynomium[22]
A great improvement to our understanding of the glassy
p(T)=1.2983-7.00< 10 *T—1.23x10 'T?, (23)  state of matter has come from the extension of the theoretical
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building of the mode-coupling theor¢fMCT) [2,3] devel- in the g-independenfunction G.., namely spatial and tem-
oped for theequilibrium description of the dynamics of poral correlations result to be completely independent.
simple, i.e., monatomic, liquid to the study of the glassyG. (t) is asymptotically expressed by two power laws, re-
state. Although such theory is the only microscopic approaclspectively thecritical decayand thevon Schweidler lay2],

to the glass transition leading to many predictions on thecharacterized by théemperature and momentum indepen-
experimental data, it is still at the center of a strong debatelentexponentsa andb,

and some questions stay open. In fact, even if the real range

of validity of MCT for the study of molecular liquids has

been cleared in recent yedisee, among others, Ref23— G
25,44]], some experimental results seem to contradict funda-

mental predictions of the idealized version of MCT, such agjerea is the same exponent of the power divergence, ot

the presence of the so-called knee characterizing the lowr and it is related to the exponebt(0<b<1) via the
frequency behavior of the light scattering susceptibility equation

[26,27) or the presence of a cusp in the nonergodicity param-
eter[28]. I'’(1—a) T?1+b)

In this section we sum up the main predictions of the I'(1-2a) :F(1+2b)’ (27)
so-calledideal MCT where it is hypothesized a complete
dynamical freezing and the so-called “thermally activated\yherer is the gamma function.
hopping™ processes are neglected; such predictions will be  1he second time region is the so-calledregion where
compared with our simulation data. In the ideal MCT the,e second decaying step takes place. This region is con-
glass formation is interpreted agignamical transitiorfrom  pecteq to the collective structural relaxations and asymptoti-

an ergodic to a nonergodic behavior at a crossover tempergy)ly the theory predicts the validity of the well-knowime-
tureT.. MCT provides a self-consistent dynamical treatmente mperature superposition principlét states that, on time
[2] for the density correlation function of an isotropic systemg.gjes of the same order of magnituderas the following

scaling law holds at every temperature

t
F(q,t):f(m)- (28)
where N is the number of the particles§p=p—(p), “

5pq(t)=EiN=lexp[iq-ri(t)], andr(t) is the position of par- In other words, the correlation functions of any observables
ticle i at timet. MCT proposes a particulaansatzfor the  at different temperatures can be collapsed into a master curve
memory kernel in the related integrodifferential generalizedyhen the time is scaled witti 7, . Moreover, MCT predicts
Langevin equation, such kernel is coupling nonlinearly thethat this master curve can be fitted by a Kolrausch-William-
density fluctuations with one another. If the coupling in- Watts function(stretched exponential

creases upon lowering the temperature, the resulting dynami-

cal feedback leads to a progressive slowing down of the den- Ba

sity fluctuations until they become completely frozen at the F(q,t):f(q)exp[ _(T_> ] (29
critical temperaturd .. The ideal MCT describes the behav- “

ior as much as the temperature approachgsi.e., the pa- The o time scaler, depends on temperature through a
rametero=(T.—T)/T. is small(however, real comparisons power law of the form

have to be made far not too small, in contrast to the case of

scaling laws in phase transitiond=or temperaturd =T., T (T—To) 7, (30
F(q,t) is characterized by two step decays taking place at

different time scales and the theory gives specific predictionhere theg-independenexponenty is related to the power

o (26)

t ) (tlr,) 78, 1o<<t<rt,
| =r)P, T <t<r,.

1
F(a,t)= (805 (11805 (0)), (24)

for such different time regions. exponentsa andb of the 8 region by the relation

The first one, the3-processregion, is centered around a
time 7, which is predicted to scale like,|T—T.|¥? with _1 N 1 (31)
0<a<0.5 and to be bounded in the interval<r,<7,, Y"2a" 2

where 7, is the time scale of the microscopic dynamics and _ - _ _
7, is the structural rearrangement time scale. In this regiorfhe inverse of the diffusion COHSta?t_l(T) is predicted to
the factorization propertyholds, in the sense that the density scale liker, [2] and consequently it follows E¢30].

correlation function can be written as Up to now, all dynamical results reviewed are universal in
the sense that they are predicted to hold for the correlators of
F(g,t)=f(q)+h(q)V|o|G.(t/7,), (25 every observable with nonzero overlap with density; in par-

ticular this is true for both the one-particle and the collective
where f(q) is the nonergodicity parametefi.e., Debye- density correlation functions. Nevertheless important differ-
Waller factorfor collective correlators oMossbauer-Lamb  ences are predicted to hold for thelependence in these two
factor for single-particle correlatoysh(q) is an amplitude cases: in the former caséq) andh(q) depend smoothly on
independent of temperature and time, andthé G. cor- g, in the latter one they oscillate, respectively, in phase and
responds to time larger or smaller with respectjo So, the out of phase with the static structure fac&fiq). Moreover,
time dependence of the correlation functions is all embedde@, is predicted to be a smooth function gfin the one-



PRE 62 MOLECULAR DYNAMICS SIMULATION OF THE . .. 619

TABLE IV. Some thermodynamical results: temperatufesf- 16 ——
fectively measured, total enerdy;.,, total potential energW¥,os, 14
and kinetic energy. :z ¥
T Eqot Viot T 5 ool
(K) (kJ/mo) (kJ/mo) (kJ/mol =2 0:4 [
443 30.00 ~3.15+0.72 33.12-1.29 gz L
433 28.59 —3.78+0.69 32.371.26
420 26.88 —4.59+0.69 31.47-1.26 a3
410 25.47 —5.25+0.69 30.72-1.20 2oy
389 22.44 —6.69+0.63 29.131.14 5 15
372 19.98 —7.83+0.60 27.81-1.08 10}
351 17.10 —-9.15+0.57 26.28-1.02 05 |
331 14.34 —10.47+0.54 24.810.96 0.0 e
321 12.75 ~11.22+0.54 24.00:0.96 l4r
313 11.73 ~11.67+0.51 23.430.93 ot
300 9.96 —12.51+0.51 22.47-0.90 Tosl
294 9.15 —12.90+0.48 21.99-0.90 ? os |
283 7.59 —13.59+0.48 21.18-0.84 204l
0.2

0.0 . . . . | . . . . . .
00 01 02 03 04 05 06 07 08 09 10 11 12

particle case; at variance, it shows pronounced oscillations ir r(Am]

phase withS(q) in the collective case.
FIG. 5. Pair static distribution functions @=300 K calculated

VI. RESULTS on atoms(A), ring centers of masé), and molecular centers of
‘ mass(C); full lines represent the total contribution of both intramo-
A. Thermodynamics lecular and intermolecular distances, dashed lines only the intermo-

In this section some thermodynamical time-independentecular contribution.
results are shown such as potential, kinetic, and total energy
(see Table IV and Fig.)4 The interest in these results is Our simulations is less than the lowest temperature studied
clarified by the following argument: in computer simulations @nd then we have a good chance to have well-thermalized
dealing with the glass transition it is possible to define arésults. Nevertheless, whether or not the system is in equi-
temperature often namedl,_g;,, [29] at which one-time librium can be checked onlg posterioriby comparing the
quantities show some sort of discontinuity. Such discontinufotal simulation time with the measured relaxation time.
ity, whose position depends on the thermal history of the From the linearity of£(T) we deduce a specific heatT)
system, represents the thermodynamical point at which thgonstant in the temperature range investigated and equal to
system undergoes a glass transition on the time scale of tHeé#0 J K'*mol™*; such value must be compared with the
computer simulation, falling out of equilibrium. It is clear €xperimental value of 341.7 JK mol™* [30]. It is possible

from Fig. 4 that no discontinuity is present, i.&,_ gy, of 10 e>§plain the inconsistency between the two vallues keeping
in mind that our MD value is a classicaionquanti¢ result

48 — : : ; ; and, more important, we are neglecting many7@) degrees
42 [o—o0E,, i of freedom concerning the deformations of the phenyl rings.
V—V i

a0 | &Ym= 1 B. Structure
24 | 1 In general the static structure of a fluid is well described

18l 1 by the pair distribution function[31],

Energy [ kJ / mol ]
~

i ] y B
6 ] g<r>=@<2 ; 5<r—|ri,-|)>- (32

[

_6 F 4
ol M ] In computer simulation§20], we can identify the distances

|r_ij| with different quantities. In Fig. 5 we report some

= | o000 00000 ] g(r)’s at T=300 K where we have considered jag| the

4 : . . :
270 300 330 T 36t° « 390 420 450 distances between the carbon atoms belonging to different
omperature [K] rings (A) and between the center of masses of rit@jsand
FIG. 4. Temperature dependence of the energies tabulated imolecules(C); both total (solid line) and intermolecular

Table IV, E,, (circles, Vi, (squarey andT (triangles up together _(dashed lingcontributions are shown in order to separate the
with the internal Vi, (triangles dowh and the intermolecular internal molecular structure and the mean structural organi-

Lennard-Jone¥,, (diamond$ contributions toV,q; . zation of the whole bulk sample. In Fig(B a two peak
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45 T T T T T T T T T 3.20

280 [

240 -

200

1.60

P(x)
P(x)

1.20

%00 01 02 03 04 05 06 07 08 08 10

FIG. 6. Static distribution functions of the scalar products FIG. 7. Intensity of the peaks of the static distribution function

N+ Ng (triangles, ;- , 5 (circles, andn, - N, 5 (squaresevaluated  of Ny-N, 5 at T=440,390,330,280 Kfrom bottom to top. An en-
atT=280 K. largement of this figure arourx=0 is shown in Fig. 8.

structure is present: the first sharp peak is placed at the transition from a minimum to the other one will be longer
=0.42 nm corresponding to the mean distance betweelowering the temperature; moreover, Fig. 8 can be consid-
rings belonging to the same molecule; the second one, afred as a restatement of the energy map shown in Fig. 3,
intermolecular origin, is placed at=0.6 nm. It is worth  since the intensity of the maximum in zero is a measure of
noting that such distance is less than the greatest intramdhe transition probability between the two minima. Such
lecular C-C distance=£0.7 nm). Moreover, the molecular fenomenology will be clarified in future communications
centers of masg(r) also show a large value on distanceswhere we will study the relaxation processes associated with
less than 0.7 nm, giving the evidence of a strong packing ofhe angular degrees of freedom.

the molecules. All these features appear to be approximately The space Fourier transform gfr) is thestatic structure
temperature independent. Such packing depends strongly d¢actor. In a poliatomic system this quantity is defined as

the orientational internal configuration of the molecules,

namely on the positions of the two side rings with respect to 1 @)

the parent one; the computation of the probability distribu- S(q)= N IEJ: bib; (e i1, (33
tion of the scalar products among the versbgs ﬁwg, and '

né:, introduced in Sec. “, is somehow instructive in this where the Coefﬁcientbi are thescattering |ength3'n prin_
sense. ciple different for each species involved.

In Fig 6 the distribution functions for the quantities TheS(q) has been determined experimentally for OTP by
Ty n2 3 Ny n3, n,- n23 are shown. The first two distribu- neutron scatterin¢32,33, and the following main features
tions are practically temperature independent and give ulave been observed.
only informations on the correctness of the simulated geom-
etry: they are sharply peaked on the the correct equilibrium o.10
positions of about 0.71 and 0.69, respectively. At variance

with the distribution ofx=n,-n; and of n;-n, 5 that are

symmetric around=0, the distribution ofi; - n, ; does not \
present the symmetric peak on negative values so that wi %% 1§
can argue that the auxiliary teri, worked correctly. The 006 | 11}
most interesting distribution is the third one in which the =
peak intensity(the peak is correctly placed at,=0.59) is & >®[ ||\
higher the lower the temperature, as shown in Fig. 7, indi- o.04 |

cating therefore that the correspondent degree of freedon

(the in-phase motion af; - F‘z,a) is more and more frozen on
its equilibrium value with decreasing the temperature.
We have seen that in the isolated molecule the rotationa o.01 |
motion of the two side rings can be separated in two contri- , , , , , , ,
butions: an out-of-phase harmonic libration and an in-phase <4 -0 -2 -01 00 o1 02 03 04
pivoting around the bonds which permits rings to cross from X Ras
one equilibrium position to the other degenerate one. It is FiG. 8. Temperature dependence of the static distribution func-
clear from the structure of the distribution function in prox- ion of p,. N3 Near the saddle point position,-n,;=0 at T

imity of n; - n2 3=0 shown in Fig. 8 that the time needed for =440,420,390,370,350,330,320,300,280(fiom top to botton.

0.03 -

0.02 -
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1.8
18}
16 f
16 14l
14 12
12| —~10
z
S0t w 0.8
® 0.6
08
os | ] 04 r —— MD ,T=300[K]
. — Molecules 0.2 |~ ——- expt, T=324
o4l |/} —=~ Rings
! 0.0 F——+————————————————————
o2t |f 24
22
A S S S S S S 20 |
10 20 30 40 50 60 70 80 90 100 110 120 18 L
q[nm™'] el
FIG. 9. Static structure factors @t=300 K calculated on the = 14|
molecular(solid line) and ring centers of magdashed ling eachq @ '
point is the average over all the independent Miller indices corre- :J'g b
sponding to it. 0'6
oa b —— MD, T=300[K]
(i) In contrast to atomic systems its main peak is split in oo |
two subpeaks placed around 14 and 19 Am 0.0 R R
(i) In the g—0 region, by lowering the temperature a 0 10 20 30 40 S50 60 70 8 90 100 110 120
. I L qfpm™]
reduction of scattering intensity is observed due to the de-
crease of the isothermal compressibility [ x7>S(q=0)]. FIG. 10. Top: Comparison among molecular dynamics structure
(i) By increasing the density, a slight shift of the peakfactor (solid line) calculated taking into account both carbon and
position to highemg values is observed. hydrogen atoms as scattering centers and experimental structure

(iv) By decreasing temperature, the height of the peakactor (dashed ling measured by neutron scatteritijom [32]).
around 19 nm?! increases while the intensity of the peak at Bottom: Molecular dynamics structure faci@olid line) calculated
14 nm ! remains nearly unaffected, except for a slight re-taking into account only carbon atoms; this should be the correct
duction mostly connected to the decreasein result to be compared with the experimental structure factor mea-

In Fig. 9 we show our results for the structure factorssured by x-ray scattering.
calculated assuming as scattering centers the molecules and
the rings centers of mass with=1; every point is an aver- is present at low momenta. In particular the MD calculated
age on all the independent Miller indices corresponding tdirst peak presents a small bump at about 18~ hnthis is
the givenq. better seen in Fig. 11 where we show the srgapart of

It is much more interesting to make a comparison amongs(q) calculated aff =280 K together with the error bars
the MD results and the experimental data obtained by neuestimated by means of the statistical fluctuation of the data.
tron[Fig. 10A)] and to test what is expected for x-ray scat- The noise cannot allow us to determine the correct structure
tering [Fig. 10B)].

In evaluatingS(q) by computer simulation for a compari-
son with neutron data, we have to take into account the con. 207
tribution due to both carbon and hydrogen atoms; H atoms
are not considered in our dynamics; nevertheless, it is pos
sible to place them in fixed positions on the line extending
from the center of the ring through a carbon atom at a fixed
C-H distance computed to k- ,=0.107 nm. In this case 12|
we would have to consider different scattering lengths for the=
two speciesby andb¢; nevertheless, they are both positive ©
and about the same magnitude so that the proolitin Eq. 08 -
(33 is an ineffective constant.

In Fig. 10A) the calculated5(q) at T=300 K is shown
and compared with the data of RE32] at T=324 K; in this 04r
paper the authors show their results in terms ofdbleerent
scattering cross sectiofdo/d()) measured in mwhich is

0.0

proportional to ouiS(q). In order to compare the two results 0 5 10 q[n:ns_‘] 20 % 80
we renormalized the experimental data in such a way the
values of the two curves coincide at large The highg FIG. 11. Enlargement of the low-momenta regionSgt)) cal-

region of the calculated5(q) appears to be in excellent culated aff=280 K: the error bars are estimated from the fluctua-
agreement with the experiment but no double peak structuréon of the single configuratio(q)’s.
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TABLE V. Temperature dependence of the molecular dynamics

ol | self-diffusion coefficienD.
o T (K) 10'xXD (cn?/s)
P 443 106.2
N;O* 3 lr;;/,'f/// ' ' y . 3 433 89.3
£ Y R /;/ //// | 420 81.3
Ze e P 410 66.6
v IRT) g 389 49.3
10 3 372 37.3
ol 351 27.3
10° 331 12.5
N 321 9.4
104510'2 T 10° 10 e - 100 10 313 6.3
tips] 300 3.4
. 294 0.8
FIG. 12. Temperature dependence of the mean-square displace- 283 0.6

ment{r(t)) calculated on ring centers of mass at all temperature
investigated exceplE=440,420 K(higher temperature on topin-
set: linear scale plot of the mean-square displacement at some 38
lected temperaturg®pen symbolstogether with the long-time lin-
ear behaviofdashed lines

rate in these limited regions, the length of the plateau being
a measure of the mean lifetime of the cages.
The calculated values of the self-diffusion coefficient are

of the main peak. It is worth noting, moreover, that at thisShOW_n in Table V and plotted in F|g: 1®pen circlesas a
low temperature the characteristic relaxation time is of orde unction of temperature, tpgether ‘.N'th the power-law tem-
1 ns, so that, considering a simulation run 10 ns long, weerature dependencsolid lin¢) predicted by the MCT
have only about ten really independent system configura-
tions.

In order to calculate the simulate3{q) as is expected by A three parameters fit to these data has been performed ob-
x-ray scattering, we consider only the carbon atoms; also iRaining the following values:
this case no double-peak structure is observed in the data but

D HT)oe(T—To) 7. (36)

a clear prepeak appears & galue less than the of the first TP =278+3, (37

maximum, since the high-behavior is similar to the neutron

case, as shown in Fig. (B). yP)=18+0.1, (39)
C. Self-diffusion coefficient In the same figure we also show the experimental (fata

squarep [34,35 that are well represented by E@36)
(dashed ling with the valuesy=2.3=0.1 and T,=292
+2 K.

An important quantity to consider in the study of the dy-
namics of our system at a microscopic level is thean-
squared displacemeriMSD) defined as

AD . (T)
0Dy (T)
oD, (T+20[KI)

1 — —
()= 5 2 (Rie®) ~Ri(O), (34

whereR;(t) is the position of the center of mass of the ring
¢ in the moleculei at timet; from the MSD is possible to
determine theself-diffusion coefficient D) via the Einstein
relation

o
0

107D " [s/cm?]

1,
D=I|ma<r (1)). (35

t—o

The temperature dependence of the MSD is shown in Fig. 10* |

12; each curve follows the usuahge-effectscenario. At . . . . . “

small time (less than 0.2 psthey present thé? behavior 265 295 325 355 385 415 445 475
corresponding to the ballistic motion; at long time the diffu- Temperature [ K]

sive linear time dependence of E@5) is found. At inter- FIG. 13. Temperature dependence of molecular dynafojosn

mediate times a small region is present where MSD staygircleg and experimentaifull triangles diffusion coefficients to-
almost constant and whose duration increases with decreagether with the power-law fits in the form of E¢6) (solid and
ing temperature; on these time scales molecules are trapp@édshed lines, respectivélywe show also the MD data shifted of 20
in cages built up by their neighbors, and they can only vi-K (open squarésas explained in the text.
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o,(t)

400 460

370
Temperature [ K ]

340

FIG. 14. Time dependence of the non-Gaussian parame(ey FIG. 15. Power-law fit of the temperature dependence of the
for all temperature investigatetbwer temperatures on tap positiont,, of the maximum of the non-Gaussian parameter.

It is clear from these values and from Fig. 13 that a dis-SPecific time dependence of such function but only in the
crepancy is present among the lower temperatures diffusivéact thatt, . the position of the maximum af,(t), has the
behavior of the simulated and real system, respectively; thipower dependence ohsimilar to that of Eq.(36) [36] (see
is most likely due to the fact that we have tuned the value ofig. 15. A fit to this quantity performed in the same way as
the LJ potential parameteesando in order to reproduce the before gives us the values
high-T diffusion properties of the real system. However, it is

worth noting that it is possible to reproduce quite well the th“=300i 14, (41
experimental results on the whole investigated temperature
range shifting the molecular dynamics points at temperatures Yle=1.4+0.3, (42

~20 K above their true values. In other words, we have to
assume that our actual thermodynamic point is shifted wittfompatible with the values determined by the temperature
respect to the real one; from now on, whenever we will comdependence dd, even if the error bars are larger in this case.
pare our molecular dynamics results with the experimental
ones, our calculated points will be shifted 20 K above the D. Single particle dynamics
measured temperature and the competing temperatures will Comparisons of theoherent(collective andincoherent
be indicated asT.. On these grounds from the previous (self-) density fluctuations dynamics data measured by dif-
study of the self- diffusion properties of our model we obtainferent techniquegneutron time-of-flight and backscattering
?(CD)=298t3 to be compared with the experimental value spectroscopy, photon correlation spectroscopy, depolarized
T.=290£5. Raman and Rayleigh-Brillouin light scatteringvith the

A different way to determine the parameters entering inmain predictions of MCT have been reported in literature
the power law reported in Eq36) is possible, even if not Wwith great detail§38—-43. In this section we will study the
independent from the previous one; it is based on the studgingle particle density fluctuation dynamics of our model and

of the non-Gaussiarparametetu,(t) defined ag36,37] we will compare our results with the experimental results

mainly contained in Ref$.38,39 and with the MCT predic-
9 (r4(t)) tions.
ay(t)= 5 (r2(1))2 -4 (39 The single particle dynamics of the model is embedded in

the incoherent self-intermediate scattering functidafined

where the mean-square displacemgr(t)) and(r*(t)) are, 25

respectively, the second and forth momenta of\the Hove 1

self-correlation function Fo(q,t)= 2 19 [Rig(0) = Rig(0)] (43)

_ 1 _ _
Cs(rh=y 2 (8(r—Rigt)+Ri0))). (400 where, againR;(t) is the position of the center of mass of
¢ the ring ¢ in the molecule at timet. At every temperature
o considered two sets of configurations, produced with two
The pargmeterog(t). quantifies - the _degreg of ”9’?' different storing times as desgcribed in éoec. IV, have been
Gaussianity of54(r,t) in space as a function of time and itiS e to reconstruct the whole curve. We consideredTthe
normalized in such a way that, (Bs(r,t) was a Gaussian dependence O'FS(q't) at the two momentum Va|ueq
function in space at a given time we would havea,(t) =14,19 nm! corresponding to the first and second peaks
=0. The time dependence af(t) at all temperatures inves- of the static structure factor, averaging on values lling
tigated is shown in Fig. 14. We are not interested here in thén the interval g+ Aq with Aq=0.2 nmi 1. Finally, we
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FIG. 16. Temperature dependence Faf(q,t) calculated atg

=14 nm! for all temperatures investigated excepT
=410,430 K(lower temperatures on tpp

spanned aff =300 K the whole interesting space in the
intervalg=2-+30 nm ! (averaging on the values offall-
ing in the same interval g wide).

In Fig. 16 we showF¢(q,t) for nearly all temperatures
investigated atj=(qma=14 nm 1; all the curves decay to
zero, i.e., the length of all the simulations allows the fluctua
tions to become completely uncorrelated. We are in
“good” thermodynamical equilibrium at every temperature,
at least on the space scales corresponding to the inverse

qmax-
At temperatures lower thehi=330 K the relaxation fol-

lows clearly the predicted two step pattern: on microscop
time scales the correlation is quadratic in time, this time-
scale being the one on which the intramolecular vibrations
happen; on intermediate time scales we observe the form&
tion of a plateau, whose height is the nonergodicity param
eterf(q) and whose length in time is comparable to the one
of the plateau in the MS@r?(t)). On long-time scales we
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An,
10 | Og=14[nm™"]
Oq=19

290 320 350 380 410 440 470
Temperature [ K]

FIG. 18. Temperature dependence gf at q=14,19 nm'!
(circles and squares, respectivetggether with the power-law fits
with TZ“:296 K and y"«=2.0 (solid and dashed lines, respec-
tively); also the experimental shear viscosify= 7, data(full tri-
angles are reportedsee[22] and reference thereimultiplied by a
factor 1.5 ps/Poise. Molecular dynamics results have been shifted
20 K with respect to the measured temperatures, as explained in
text.

exponential. At the highest temperatures no double pattern is

visible anymore and only a nearly exponential relaxation can

%e recognized. A stretched exponential[§iee Eq.(29)] on

the structural time scaleq proces$gives us the temperature
ependence of the three free paramegys r,, andf(q).
The parameteB,, (circles is shown in Fig. 17; it appears

ié[o be nearlyT independent for temperature lower than

=400 K and its mean valug,=0.8 (dashed linghas to be
ompared with the experimental valy,=0.6. For tem-
erature in the higher region it tends toward the vafije
=1 (errors are clearly much more greatesuch behavior is
due to the fact that in this temperature region it is no longer
possible to sharply separate the long-time relaxation region

érom the microscopic short-time one. The study of the tem-

perature dependence of the nonergodicity paranfétgr in
the interesting region is not possible due to our limited tem-

1.00
0.95 | OB,
of, 1.0
0.90 + q=14nm™"
E E E 09
0.85 |
o - 08}
1O
0.80 --ch———‘;ri--ﬁ ——————— Qe e o7 |
< 075 |
- v o o ~ 06|
S o g hat
0.70 F o -
o o a E:m 05}
0.65 | w
04}
0.60 |
03}
0.55 |
02}
050 . . . . .
280 310 340 370 400 430 460 o1}
Temperature [K]
0'?0” 107 1 ol’z 107 1 6" 10'
FIG. 17. Temperature dependence of the stretching paramete /1t

B, (circles and of the nonergodicity parametéy (squarey the
horizontal lines indicate the mean values®f (dashed lingandf,
(dot-dashed ling

FIG. 19. F4(q,t) at g=14 nm'! rescaled tot/r,; all the
curves verify the time-temperature superposition principle.
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FIG. 20. Q-dependence ofF(q,t) at T=300 K for g FIG. 22. Q-erendence 0]‘ the inverse relaxatiqn .timjel; mo-
=2n nm! with n=3, . .. ,15(from top to bottor. lecular dynamics datéopen circles have been multiplied by a fac-

tor 6.5 in order to overlap the experimengaB] data(full circles),

perature range which do not permit to observe the expecte.‘as e>£plained in the text. The solid line is the correct smdkhav-

1ra) — 2 — -5
low-temperature T<T,) harmonic Debye-like behavior, lor 7,%(q)=6Dq’, where ©=20.4<10"° nnv/ps.

and the onset of the anomalous decreasé(q) with in-  \jithin the statistical error, with the values calculated from
creasingT for T,<T<T.. Our data suggest U§;<283 K  the diffusion data, so we can conclude that the diffusive be-

and the mean valug(q)=0.7 (dot-dashed lineagrees with  havior and the self-dynamics of our model follow the same
the experimental value determinedTat 290 K shown later o1 power law withT,=297 K andy=1.8.

in Fig. 21. Also the values ofr, for q=19 nm ! (squares corre-

It is worth testing the pO_WGI’-LTiW temperature dependencgponding to the second peak of the static structure function
Eqg. (30) for the relaxation timer, ; the calculated relaxation are reported with the theoretical curve. A fit has been per-

times (circles shifted 2_0 K with respect to the_ me_asured formed(dashed lingonly on the prefactor keeping fixed the
temperatures, as explained above, are plotted in Fig. 18 WQalues of the other two parameters in order to show that

getger W'th. the expegmegtﬁfull trlar)glegl shez?er?c%szlty these data also are compatible with the same power law. The
7 data (ys is expected to be proportional 1) of Ref. [22] crucial observation here is that the values of the two param-

and the theoretical fitted curvsolid line) of parameters etersT, andy are effectivelyq independent and they can be
considered universal for our model, as predicted by the

Ti*=296+7, @4 mcT.
The relaxation timer, can be also used to test the time-
y5=2.0+0.4 (45 temperature superposition principle Eg8). In Fig. 19 the
curves are shown in function of the rescaled tithe, and it
to be compared with the experimental results of R88], s clearly seen that all the curves tend to collapse on the same

T.=290+5 K and y=2.55. These values are compatible, master curve as predicted by the theory.

1.0 ———— ———————— A ———— 1.0
T=300K é%é% T=800K
09 1t {09
[mEVAY
o a
08 SSech 1t {08
o PR :
(S) LA FIG. 21. Q dependence of the stretching and
071 OOOOO 1r o 197 non-ergodicity parameters: Left: molecular dy-
(e} .%é namics(circles and experimentaffilled circles,
06 | ® Cocot® 1t {08 .y
o’ O . from [38]) values of the coefficienB, as deter-
=05 | o ® 1L {05 - mined by the stretched exponential fits. Right: ex-
- - perimental valuedfilled squarey of the noner-
04| 1t Emg 404 godicity parameter [38] together with the
Yy molecular dynamics results as determined by a
03| 1r T 103 MCT analysis of botha (squares and 8 (tri-
4 angles regions and the Gaussian f&@lid line) to
bl S 1T awp poeeen 1°2 a-region results withr2=365 nni 2.
| expt.

01 1 0.1

1——- exp(-q®726%)

0.0 e e 0.0
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28 32
a[nm™'] qlnm™']
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We now quantify theg dependence of the self-dynamics together with the experimental data8] (full circles). Mo-
long-time behavior of the system @t=300 K. In Fig. 20 lecular dynamics points have been rescaled by a factor
are reported the curves,(q,t) for values ofq=2n nm?! TZAD(T:28O K)/T';/ID(T=3OO K)=6.5 to take into account
with n=3,...,15; thechoice of the temperature value the fact, as discussed above, that our system temperature is
=300 K has been due to the need of “well-thermalized” 20 K higher than the real one. The correct square-law behav-
results in a large range of Also in these data are the well- ior at low-q 7, *(q)=6Dq? [see Eq(47)] is also shown as a
defined two-step behavior and we can calculate the long-timgolid line; hereD is the self-diffusion coefficient and 5
stretched exponential fit parameters; the resulting values are 20.4x 10°° nm?/ps.

shown in Figs. 21 and 22. In Fig. 21 the valuesgyf (left Finally, in Fig. 23, two products of some calculated quan-

sidg andf(q) (right sidg are shown. tity, expected to be constant, are shown; on the left-hand side
B, (open circles appears to be a smooth function @f the statemenD (T)x7,(T) is proven forq=Qgmay (good

and it tends, for large values of to the experimentaffull  at highest temperatureOn the right-hand side we show the

circles evaluated value of 0.6. Such behavior is quite genproductraqu evaluated aT =300 K, which is nearly con-
eral (see, for instance, Reff37]) and can be easily explained stant up toq=18 as expected, this value being approxi-
by the following argumeni37]: for large values of), corre-  mately the crossover point among the correct quadratic be-
sponding to length scales of the same order of magnitude @favior and the asymptotically linear regime as we found
the cages dimension, the dynamics becomes slower anghove.

slower approaching the cage dynamics described through the | et us now probe the MCT conclusions about fBee-

von Schweidler exponeifit At variance, in the opposite limit  gion which is predicted to follow the power laws of E@6):
of small g, we consider a diffusive dynamics on large dis-

tances; at such length scales the decay of the self-densit-
fluctuations is of the wusual purely exponential form 1.0 pm
exp (—Dg?t) corresponding t8,=1 (see Fig. 27. At this
stage, however, we have not a reasonable explanation of th
disagreement with the experimental data.

In the right side of Fig. 21 theg dependence of the non-
ergodicity parametef(q) is also shown as calculated from

09

0.8

the short-time limit of thea process(squares from the =

long-time part(triangles of the 8 region (as we will see %7

below), and from the experimental daffull square$[38]; it -

seems clear a good agreement between our values and tt o6 | 4q=10

experimental results. The data appear to be monotonic de e

creasing as increasingand this dependence is expected to o5  ——-f,-c,t",

be approximately Gaussian; in Fig. 21 a Gaussiafsbtid T faret

line) in the form expg%20?) with o=19 nm ! to the ‘ ,

molecular dynamicsr region data is also shown. It is clear AT 10°

that theq range considered here is too limited to really de- tfpel

cide on the validity of this functional forrta linear approxi- FIG. 24. Power laws in th@ region forq=8,10,12,14 nm®;
mation would work well tog, a good estimate of the error critical decay of exponent@ (dot-dashed lingsand the von
bars lacking in this case. Scweidler law of exponerit (dashed lineshave been reported with

In Fig. 22 theq dependence of,* is shown(circles  simulation points.
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we show here the results at fixed temperaflire300 K for ~ remains constant, as expected, being its mean value 2.6 is

values ofg=6-+n nm ! with n=0, ...,17. clearly compatible with the value 2.55 determined from ex-
We fit all the curves by two power funct|ons on the time perimental datd38]; nevertheless, thls value overestimates
rangesd, and 6, the value y=2.0+0.4 at q=14 nm ! previously deter-
mined by the fit to ther region. Furthermordy(q) is always
f +C1t ted; less than the determined value of the laggealue of the
Fs(a.0)= cztb, te o, (46) stretching parametes,,= 0.6 (see Fig. 21 verifying another

MCT prediction, namely &cb<j,, .

where ;,=[0.15:2] (ps) and 6,=[3:20] (ps); some se- From Eqgs.(25), (26), and (46) the two parameters,(q)
lected fits are shown in Fig. 24 and they seem to work quitendc,(q) result to be proportional tb(q), the proportion-
well. ality constants being dependent on 7,, a, andb. From

Some observations are needed on the following analysist,~280 K we have\o=0.3 while we choose as a good
a great uncertainty stems from the choice of the fit rangestimate ofr, the intersection point of the two power laws of
(i.e., from the choice o#,; and 6,) due to the consideration Fig. 24, obtainingr,=2 ps; if we puta=0.31 andb
of a crossover region between two processes not sharph0.52 we finally obtain the factors 2.7 and 2.3 égrandc,,
separated in time; moreover, an analogous problem canneéspectively.
be excluded between the microscopic region and the critical Unfortunately these value are not able to correctly rescale
decay region characterized by the exporer8uch difficulty  our data on the experimental results, the correct values being
implies a great uncertainty on the determinationf¢f) 0.7 and 4 as shown in Fig. 26; this result could be expected
which is supposed to be considered as the long-time limit otonsidering the great uncertainties on the parameter values
the B process and the short-time behavior of therelax-  used for the estimate. Nevertheless, simulated data agree
ation. At this point it is clear that, lacking a careful error quite well with the experimental points at logvpresenting a

analysis on the data points, such fits can only state that &rong bending toward a constant value in the regipn
parametrization of the data in the form of E46) is possible >16 nm?

which is consistent with the theory predictiofg9], the cur- To complete the picture of the self-motion in our model,
rent values of the determined parameters being considerege test the validity of theGaussian approximatiorto
only from a qualitative point of view. F«(q,t) in the limit of small momentuny. The first-order

Nevertheless the values of such fitting parameters, showerm of the expansion d¥4(q,t) in powers ofg? gives[31]
in Figs. 25 and 26, appear to be in good agreement with the

values obtained from the experimental data. In Fig. 25 are q

shown (left) the values of the power exponergssquares Fs(q,t)zexp{ - E<r2(t)>]' (47)
andb (circles and of the exponeny (triangles calculated

by means of Eq(31) (right side; the mean values are 0.3, In Fig. 27 some curves dt=330 K and different values of
0.5, 2.6, respectively, to be compared with the experimentadj are shown together with the corresponding approximations;
determined valuesa=0.31 (dot-dashed ling b=0.52 such approximation seems to work quite good and it be-
(dashed ling y=2.55(solid line) [38]. comes worse on increasimgas expected.

It is clear from these results that one of the main predic- At the end, we show in Fig. 28 all the time scales related
tions of MCT, namely theg independence of and b is  to centers of mass motion investigated up to now as a func-
verified in the limit of the error fluctuations. Moreover, it is tion of temperature. Full circles and squares indicate, respec-
important to note that the parametgr given by Eq.(31), tively, the experimental structural relaxation timé;pﬁ(T),
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FIG. 26. Q dependence of the experimentlll circles) coeffi- FIG. 28. Master plot of the temperature dependence of all the

cienth of Eq. (25) and of our fitting parameters; (triangles, c, centers of mass time scales discussed: we have used full symbols
(squarek note that our results have been rescaled by a factor 0.for experimental results and open symbols for molecular dynamics
and 5, respectively in order to superimpose to experimental data.data. Molecular dynamics points collapse exactly on the master
curve identified by the experimental data if they are multiplied by a
following the Vogel-Fulcher law, and the experimental in- Scale fgcto(taking into account the momentum erendenc.ies qf the
verse self-diffusion coefficiengxlpl(T) multiplied by a fac- relaxation timery,, and the correct dimensionality of the diffusion

tor 5X 105 cn? in order to superimpose t@XX_F(T). The coefficient$ and the corresponding temperatures are shifted 20 K

open svmbols are used to represent the mole’;(t:ular d namig\bove the measured ones, as discussed in the text. In particular,
P y p y T%AD (open diamondsis multiplied by a factor 1.5, and the self-

resu_ltS:Ti/ID (d'fimond$ IS theﬁgelaxa.tlo_n time of the one- s gjon coefficientsD;xlpt(fuII square andD,p, (open triangles
particle dynamics afj=14 nm = multiplied by a scale fac- e rescaled by a factors107° cn.

tor 1.5 andD,5(T) (triangles up is the inverse of the dif-

fusion coefficient rescaled by the same factorthe fragile glass-former OTP; such a model appears to be
5x10°° cn? we used for the experimental points. All the much more efficient with respect to the ones introduced so
molecular dynamics points have been shifted of 20 K withfar in the sense that it represents a much better compromise
respect to the measured temperatures; it is quite clear théktween the resulting computing needs and its capability to
both experimental and molecular dynamics data points colmimic all the complexities of the dynamical behavior of the
lapse on a well-defined master curve. Our model is, at leasteal system.

a good model for centers of mass dynamics of OTP. It takes into account not only the translational and rota-
tional dynamics of the molecules as a whole but also the
VIl. CONCLUSIONS stretching along the molecular bonds, and the tilt of the

bonds, the rotations of the side rings with respect to the

In this paper we have introduced an interaction pOtentiabarent ring. It is tuned in such a way to reproduce the iso-
model capable of describing the intramolecular dynamics ofated molecule vibrational spectrum. In this way, most likely,
we have introduced the degrees of freedom whose interplay
causes the complex dynamical behavior of the real system.
We have, then, presented the results of molecular dynamics
computer simulations of such a model; we mainly studied the
static structure of a bulk sample, the self-diffusion proper-
ties, and the self-part of the density-density correlation func-
tions.

The static structure factor simulated in such a way is com-
pared with the experimental measures and shows a good
agreement with the neutron scattering data, except for the
very low momenta behaviddue, probably, to the finite size
of our system Moreover, we have no evidence of the split-
ting of the main peak in two subpeaks placed @t
=14,19 nm%, only the first one being clearly visible. This
luck may be due mainly to the temperature range investi-
gated (the intensity of the second subpeak increases with
lowering temperatune

The self-diffusion properties of the system have been in-

FIG. 27. Gaussian approximation Fy(q,t) at T=330 K for  vestigated through the mean-squared displacement and the
9=2,3,4,6,8,1,1.2 nm' (from top to botton. self-diffusion coefficient temperature behavior; comparisons
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with experimental self-diffusion data give a very good agree-exponenty=2.0+=0.4 must be compared with the experi-
ment, showing the evidence of compatible critical dynamicamental valuey=2.5.
behavior in approaching the instability temperatdrg of The g dependence & =300 K in the momentum range
MCT which is here found to b& =278+ 3 to be compared g=6-30 nm ! has been analyzed in terms of a stretched
with the experimental valud =290+5 determined by a exponential fit; the values of the determined parameters are
MCT analysis of the dynamics of the density fluctuations, &n good agreement with the ones calculated by fitting the
discrepancy which is most to likely ascribed to the intermo-gyperimental points and with the MCT expected behavior.
lecular LJ potential parameters (€) that have beentunedin  To summarize, in the present work we have shown that
the temperature region close #=300 K. Moreover, we  our model for OTP fluid is mimicking rather well the center
considered the critical temperature dependence of the sf mass dynamical features of the real system, giving results
called non-Gaussianity parametes(t) obtaining compat- iy most cases fully compatible with the experimental find-
ible values for the power-law parameters. ings. It is clear that its ability to help us in the understanding
The self-dynamics of the density fluctuations has beerpf the most exotic dynamic features of the real systems and,
studied in great detail on the whole accessible time windowin particular, of the relevance of the internal degrees of free-
spanning the range from a time scale of the order of fewjom on the translational dynamics, has not been fully dis-
femtoseconds to times of order of some nanoseconds; morgiayed in this paper; problems such as the collective dynam-
over, its dependence on temperature and momenta has b&gg density fluctuation behavior, the rotational dynamics, the
investigated. All the correlation curves calculated show theyrigin of the unusual fast relaxational dynamics, and many
typical two step behavior predicted by MCT, the first one ongthers, will be addressed in future worKi9].
short time being associated with the so-called “micro-
scopic” processes, i.e., the vibrational motion of molecules

in the cage bgilt up by their neighbors; the second one being ACNOWLEDGMENTS
associated with thex process which controls the structural
rearrangements of molecules on a long-time scale. The authors wish to thank W. @& for a critical reading

The critical dynamics on aa time scale approaching the of the manuscript, L. Bernardini and G. Giuliani of the
correspondenf; is in good agreement with experimental “Parco Tecnologico d’Abruzzo” for technical support, G.
findings; indeed the estimate values for our model of theMonaco and F. Sciortino for some useful discussions.
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